Electronic Information Department, Dalian Polytechnic University, Dalian 116034, China.
Sensors (Basel). 2024 Sep 10;24(18):5868. doi: 10.3390/s24185868.
Facial expression recognition using convolutional neural networks (CNNs) is a prevalent research area, and the network's complexity poses obstacles for deployment on devices with limited computational resources, such as mobile devices. To address these challenges, researchers have developed lightweight networks with the aim of reducing model size and minimizing parameters without compromising accuracy. The LiteFer method introduced in this study incorporates depth-separable convolution and a lightweight attention mechanism, effectively reducing network parameters. Moreover, through comprehensive comparative experiments on the RAFDB and FERPlus datasets, its superior performance over various state-of-the-art lightweight expression-recognition methods is evident.
基于卷积神经网络(CNN)的面部表情识别是当前研究的热门领域,但由于网络的复杂性,在计算资源有限的设备(如移动设备)上部署会面临挑战。为了解决这些问题,研究人员开发了轻量级网络,旨在减少模型大小和参数数量,同时又不影响准确性。本研究中提出的 LiteFer 方法结合了深度可分离卷积和轻量级注意力机制,有效地减少了网络参数。此外,通过在 RAFDB 和 FERPlus 数据集上进行全面的对比实验,该方法在各种先进的轻量级表情识别方法中表现出了优越性。