Suppr超能文献

基于快速检测的电子鼻湿度补偿系统

Electronic Nose Humidity Compensation System Based on Rapid Detection.

作者信息

Cai Minhao, Xu Sai, Zhou Xingxing, Lu Huazhong

机构信息

College of Engineering, South China Agricultural University, Guangzhou 510642, China.

Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

出版信息

Sensors (Basel). 2024 Sep 10;24(18):5881. doi: 10.3390/s24185881.

Abstract

In this study, we present an electronic nose (e-nose) humidity compensation system based on rapid detection to solve the issue of humidity drift's potential negative impact on the performance of electronic noses. First, we chose the first ten seconds of non-steady state (rapid detection mode) sensor data as the dataset, rather than waiting for the electronic nose to stabilize during the detection process. This was carried out in the hope of improving the detection efficiency of the e-nose and to demonstrate that the e-nose can collect gasses efficiently in rapid detection mode. The random forest approach is then used to optimize and reduce the dataset's dimensionality, filtering critical features and improving the electronic nose's classification capacity. Finally, this study builds an electronic nose humidity compensation system to compensate for the datasets generated via rapid real-time detection, efficiently correcting the deviation of the sensor response caused by humidity variations. This method enhanced the average resolution of the electronic nose in this trial from 87.7% to 99.3%, a 12.4% improvement, demonstrating the efficacy of the humidity compensation system based on rapid detection for the electronic nose. This strategy not only improves the electronic nose's anti-drift and classification capabilities but also extends its service life, presenting a new solution for the electronic nose in practical detecting applications.

摘要

在本研究中,我们提出了一种基于快速检测的电子鼻湿度补偿系统,以解决湿度漂移对电子鼻性能可能产生的负面影响问题。首先,我们选择非稳态(快速检测模式)下的前10秒传感器数据作为数据集,而不是在检测过程中等待电子鼻稳定下来。这样做是希望提高电子鼻的检测效率,并证明电子鼻在快速检测模式下能够高效地收集气体。然后使用随机森林方法对数据集进行优化和降维,筛选关键特征并提高电子鼻的分类能力。最后,本研究构建了一个电子鼻湿度补偿系统,用于补偿通过快速实时检测生成的数据集,有效校正湿度变化引起的传感器响应偏差。该方法在本次试验中将电子鼻的平均分辨率从87.7%提高到了99.3%,提高了12.4%,证明了基于快速检测的电子鼻湿度补偿系统的有效性。该策略不仅提高了电子鼻的抗漂移和分类能力,还延长了其使用寿命,为电子鼻在实际检测应用中提供了一种新的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b545/11436173/c81a1d989d7b/sensors-24-05881-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验