Suppr超能文献

用于猪舍氨气监测的虚拟MOS传感器阵列设计

Virtual MOS Sensor Array Design for Ammonia Monitoring in Pig Barns.

作者信息

Parsiegel Raphael, Budag Becker Miguel, Try Pieter, Gebhard Marion

机构信息

Group of Sensors and Actuators, Department of Electrical Engineering and Applied Sciences, Westphalian University of Applied Sciences, 45897 Gelsenkirchen, Germany.

出版信息

Sensors (Basel). 2025 Apr 20;25(8):2617. doi: 10.3390/s25082617.

Abstract

Animal welfare in barns is strongly influenced by air quality, with gaseous emissions like ammonia posing significant respiratory health risks. However, current state-of-the-art ammonia monitoring systems are labor-intensive and expensive. Metal Oxide Semiconductor (MOS) sensors offer a promising alternative due to their compatibility with sensor networks, enabling high-resolution ammonia monitoring across spatial and temporal scales. While MOS sensors exhibit high sensitivity to various volatile compounds, temperature-cycled operation is commonly employed to enhance selectivity, effectively creating virtual sensor arrays. This study aims to improve ammonia detection by designing a virtual sensor array through a cyclic data-driven approach, integrating machine learning with solid-state sensor modeling. The results of a two-week dataset with measurements of four different pig barns demonstrate ammonia sensing with a sampling rate of about 2/min and a range of 1-30 ppm. The method is robust and exhibits a 10% increase in normalized RMSE when comparing testing results of an unseen sensor module with results of the training dataset. A filter membrane boosts accuracy and prevents data loss due to contamination, such as flyspecks. Overall, the used MOS sensor BME688 is effective and economical for widespread continuous ammonia monitoring and localization of ammonia sources in pig barns.

摘要

畜舍中的动物福利受空气质量的影响很大,像氨气这样的气体排放会带来重大的呼吸健康风险。然而,当前最先进的氨气监测系统劳动强度大且成本高昂。金属氧化物半导体(MOS)传感器因其与传感器网络的兼容性而提供了一种有前景的替代方案,能够在空间和时间尺度上进行高分辨率的氨气监测。虽然MOS传感器对各种挥发性化合物表现出高灵敏度,但通常采用温度循环操作来提高选择性,从而有效地创建虚拟传感器阵列。本研究旨在通过循环数据驱动方法设计虚拟传感器阵列,将机器学习与固态传感器建模相结合,以改进氨气检测。对四个不同猪舍进行两周测量得到的数据集结果表明,氨气传感的采样率约为2次/分钟,范围为1 - 30 ppm。该方法具有鲁棒性,当将一个未见过的传感器模块的测试结果与训练数据集的结果进行比较时,归一化均方根误差(RMSE)增加了10%。滤膜提高了准确性,并防止因污染(如蝇斑)导致的数据丢失。总体而言,所使用的MOS传感器BME688对于猪舍中广泛的连续氨气监测和氨源定位是有效且经济的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/443f/12031518/b72437bc0c46/sensors-25-02617-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验