Wang Jichao
Moscow Institute of Aeronautics and Technology, Anyang Institute of Technology, Anyang, China.
Sci Prog. 2024 Jul-Sep;107(3):368504241283360. doi: 10.1177/00368504241283360.
In contemporary society, commercial buildings, as a crucial component of urban development, face increasingly prominent energy consumption issues, posing significant challenges to the environment and sustainable development. Traditional energy management methods rely on empirical models and rule-based approaches, which suffer from low prediction accuracy and limited applicability. To address these issues, this study proposes a commercial building energy consumption prediction and energy-saving strategy model based on hybrid deep learning and optimization algorithms. This model integrates convolutional neural networks (CNN), gated recurrent units (GRU), and the clonal selection algorithm (CSA), aiming to enhance the accuracy and efficiency of energy consumption predictions. Experimental results demonstrate that the CNN-GRU-CSA Network (CGC-Net) model achieves mean absolute errors (MAE) of 17.12, 16.73, 16.62, and 15.94 on the Building Data Genome Project (BDGP), Commercial Building Energy Consumption Survey (CBECS), Nonresidential Building Energy Performance Benchmark (NEPB), and Building Energy Efficiency Benchmark (BEBDEE) datasets, respectively, significantly outperforming traditional methods and other models. Additionally, the model exhibits faster inference and training times. These results validate the stability and superiority of the CGC-Net model, providing an innovative solution and essential technical support for commercial building energy management.
在当代社会,商业建筑作为城市发展的关键组成部分,面临着日益突出的能源消耗问题,对环境和可持续发展构成了重大挑战。传统的能源管理方法依赖于经验模型和基于规则的方法,存在预测精度低和适用性有限的问题。为了解决这些问题,本研究提出了一种基于混合深度学习和优化算法的商业建筑能耗预测与节能策略模型。该模型集成了卷积神经网络(CNN)、门控循环单元(GRU)和克隆选择算法(CSA),旨在提高能耗预测的准确性和效率。实验结果表明,CNN-GRU-CSA网络(CGC-Net)模型在建筑数据基因组计划(BDGP)、商业建筑能耗调查(CBECS)、非住宅建筑能源性能基准(NEPB)和建筑能源效率基准(BEBDEE)数据集上的平均绝对误差(MAE)分别为17.12、16.73、16.62和15.94,显著优于传统方法和其他模型。此外,该模型的推理和训练时间更快。这些结果验证了CGC-Net模型的稳定性和优越性,为商业建筑能源管理提供了创新解决方案和重要技术支持。