Suppr超能文献

朝向 TMS-EEG 数据预处理标准的定义。

Towards the definition of a standard in TMS-EEG data preprocessing.

机构信息

Center for Mind/Brain Sciences-CIMeC, University of Trento, I-38123 Trento, Italy.

Center for Mind/Brain Sciences-CIMeC, University of Trento, I-38123 Trento, Italy.

出版信息

Neuroimage. 2024 Nov 1;301:120874. doi: 10.1016/j.neuroimage.2024.120874. Epub 2024 Sep 26.

Abstract

Combining Non-Invasive Brain Stimulation (NIBS) techniques with the recording of brain electrophysiological activity is an increasingly widespread approach in neuroscience. Particularly successful has been the simultaneous combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Unfortunately, the strong magnetic pulse required to effectively interact with brain activity inevitably induces artifacts in the concurrent EEG acquisition. Therefore, a careful but aggressive pre-processing is required to efficiently remove artifacts. Unfortunately, as already reported in the literature, different preprocessing approaches can introduce variability in the results. Here we aim at characterizing the three main TMS-EEG preprocessing pipelines currently available, namely ARTIST (Wu et al., 2018), TESA (Rogasch et al., 2017) and SOUND/SSP-SIR (Mutanen et al., 2018, 2016), providing an insight to researchers who need to choose between different approaches. Differently from previous works, we tested the pipelines using a synthetic TMS-EEG signal with a known ground-truth (the artifacts-free to-be-reconstructed signal). In this way, it was possible to assess the reliability of each pipeline precisely and quantitatively, providing a more robust reference for future research. In summary, we found that all pipelines performed well, but with differences in terms of the spatio-temporal precision of the ground-truth reconstruction. Crucially, the three pipelines impacted differently on the inter-trial variability, with ARTIST introducing inter-trial variability not already intrinsic to the ground-truth signal.

摘要

将非侵入性脑刺激 (NIBS) 技术与脑电生理活动的记录相结合是神经科学中一种越来越广泛的方法。经颅磁刺激 (TMS) 和脑电图 (EEG) 的同步结合尤其成功。不幸的是,与脑活动有效相互作用所需的强磁场脉冲不可避免地会在同时进行的 EEG 采集过程中引入伪影。因此,需要进行仔细但积极的预处理以有效地去除伪影。不幸的是,正如文献中已经报道的那样,不同的预处理方法可能会导致结果产生可变性。在这里,我们旨在描述当前可用的三种主要 TMS-EEG 预处理管道,即 ARTIST(Wu 等人,2018 年)、TESA(Rogasch 等人,2017 年)和 SOUND/SSP-SIR(Mutanen 等人,2018 年,2016 年),为需要在不同方法之间进行选择的研究人员提供深入了解。与以前的工作不同,我们使用具有已知真实值(无伪影的待重建信号)的合成 TMS-EEG 信号测试了这些管道。通过这种方式,可以准确和定量地评估每个管道的可靠性,为未来的研究提供更可靠的参考。总之,我们发现所有管道都表现良好,但在真实值重建的时空精度方面存在差异。至关重要的是,这三个管道对试验间变异性的影响不同,ARTIST 引入了试验间变异性,而这种变异性并不是真实值信号固有的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验