Suppr超能文献

使用经颅磁刺激脑电图(TMS-EEG)评估离线处理期间脑网络对扰动的抗性变化的方案。

Protocol to assess changes in brain network resistance to perturbation during offline processing using TMS-EEG.

作者信息

Bracco Martina, Mutanen Tuomas P, Veniero Domenica, Thut Gregor, Robertson Edwin M

机构信息

Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 Bd de l'Hôpital, 75013 Paris, France.

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI-00076 Aalto, Finland.

出版信息

STAR Protoc. 2025 Mar 21;6(1):103622. doi: 10.1016/j.xpro.2025.103622. Epub 2025 Feb 6.

Abstract

Transcranial magnetic stimulation (TMS) perturbs specific brain regions and, combined with electroencephalography (EEG), enables the assessment of activity within their connected networks. We present a resting-state TMS-EEG protocol, combined with a controlled experimental design, to assess changes in brain network activity during offline processing, following a behavioral task. We describe steps for experimental design planning, setup preparation, data collection, and analysis. This approach minimizes biases inherent to TMS-EEG, ensuring an accurate assessment of changes within the network. For complete details of the use and execution of this protocol, please refer to Bracco et al..

摘要

经颅磁刺激(TMS)可干扰特定脑区,与脑电图(EEG)相结合,能够评估其连接网络内的活动。我们提出了一种静息态TMS-EEG方案,并结合可控实验设计,以评估行为任务后离线处理期间脑网络活动的变化。我们描述了实验设计规划、设置准备、数据收集和分析的步骤。这种方法将TMS-EEG固有的偏差降至最低,确保对网络内的变化进行准确评估。有关此方案的使用和执行的完整详细信息,请参阅布拉科等人的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验