Costantini Lorenzo, Laio Francesco, Mariani Manuel Sebastian, Ridolfi Luca, Sciarra Carla
CENTAI, Turin, Italy.
DIATI, Politecnico di Torino, Turin, 10129, Italy.
Sci Rep. 2024 Sep 28;14(1):22438. doi: 10.1038/s41598-024-73060-0.
Urgent climate action, especially carbon emissions reduction, is required to achieve sustainable goals. Therefore, understanding the drivers of and predicting [Formula: see text] emissions is a compelling matter. We present two global modeling frameworks-a multivariate regression and a Random Forest Regressor (RFR)-to hindcast (until 2021) and forecast (up to 2035) [Formula: see text] emissions across 117 countries as driven by 12 socioeconomic indicators regarding carbon emissions, economic well-being, green and complexity economics, energy use and consumption. Our results identify key driving features to explain emissions pathways, where beyond-GDP indicators rooted in the Economic Complexity field emerge. Considering current countries' development status, divergent emission dynamics appear. According to the RFR, a -6.2% reduction is predicted for developed economies by 2035 and a +19% increase for developing ones (referring to 2020), thus stressing the need to promote green growth and sustainable development in low-capacity contexts.
要实现可持续发展目标,迫切需要采取气候行动,尤其是减少碳排放。因此,了解碳排放的驱动因素并进行预测是一件紧迫的事情。我们提出了两个全球建模框架——多元回归和随机森林回归器(RFR)——来对117个国家的碳排放进行回溯(至2021年)和预测(至2035年),这些碳排放由12个关于碳排放、经济福祉、绿色与复杂性经济学、能源使用和消费的社会经济指标驱动。我们的结果确定了解释排放路径的关键驱动特征,其中源自经济复杂性领域的超越GDP的指标出现了。考虑到当前各国的发展状况,出现了不同的排放动态。根据随机森林回归器预测,到2035年发达经济体的排放量将减少6.2%,而发展中经济体(以2020年为参照)将增加19%,这凸显了在低能力背景下促进绿色增长和可持续发展的必要性。