Suppr超能文献

预测全球各国一氧化碳排放量。

Forecasting national CO emissions worldwide.

作者信息

Costantini Lorenzo, Laio Francesco, Mariani Manuel Sebastian, Ridolfi Luca, Sciarra Carla

机构信息

CENTAI, Turin, Italy.

DIATI, Politecnico di Torino, Turin, 10129, Italy.

出版信息

Sci Rep. 2024 Sep 28;14(1):22438. doi: 10.1038/s41598-024-73060-0.

Abstract

Urgent climate action, especially carbon emissions reduction, is required to achieve sustainable goals. Therefore, understanding the drivers of and predicting [Formula: see text] emissions is a compelling matter. We present two global modeling frameworks-a multivariate regression and a Random Forest Regressor (RFR)-to hindcast (until 2021) and forecast (up to 2035) [Formula: see text] emissions across 117 countries as driven by 12 socioeconomic indicators regarding carbon emissions, economic well-being, green and complexity economics, energy use and consumption. Our results identify key driving features to explain emissions pathways, where beyond-GDP indicators rooted in the Economic Complexity field emerge. Considering current countries' development status, divergent emission dynamics appear. According to the RFR, a -6.2% reduction is predicted for developed economies by 2035 and a +19% increase for developing ones (referring to 2020), thus stressing the need to promote green growth and sustainable development in low-capacity contexts.

摘要

要实现可持续发展目标,迫切需要采取气候行动,尤其是减少碳排放。因此,了解碳排放的驱动因素并进行预测是一件紧迫的事情。我们提出了两个全球建模框架——多元回归和随机森林回归器(RFR)——来对117个国家的碳排放进行回溯(至2021年)和预测(至2035年),这些碳排放由12个关于碳排放、经济福祉、绿色与复杂性经济学、能源使用和消费的社会经济指标驱动。我们的结果确定了解释排放路径的关键驱动特征,其中源自经济复杂性领域的超越GDP的指标出现了。考虑到当前各国的发展状况,出现了不同的排放动态。根据随机森林回归器预测,到2035年发达经济体的排放量将减少6.2%,而发展中经济体(以2020年为参照)将增加19%,这凸显了在低能力背景下促进绿色增长和可持续发展的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e8c/11439049/cf18e678c8d0/41598_2024_73060_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验