Suppr超能文献

利用与原子坐标无关的描述符通过机器学习预测电子能量损失近边结构/ X射线吸收近边结构光谱及其在基态电子结构中的应用

Predicting ELNES/XANES spectra by machine learning with an atomic coordinate-independent descriptor and its application to ground-state electronic structures.

作者信息

Chen Po-Yen, Shibata Kiyou, Hagita Katsumi, Miyata Tomohiro, Mizoguchi Teruyasu

机构信息

Department of Materials Engineering, the University of Tokyo, Tokyo, Japan.

Department of Materials Engineering, the University of Tokyo, Tokyo, Japan; Institute of Industrial Science, the University of Tokyo, Tokyo, Japan.

出版信息

Micron. 2024 Dec;187:103723. doi: 10.1016/j.micron.2024.103723. Epub 2024 Sep 19.

Abstract

ELNES/XANES spectra can be observed using TEM or synchrotron radiation and can elucidate the unoccupied state electronic structures of an excited states. The computation of their features is usually demanding substantial computational resources due to the requisite structure optimization and electronic structure calculations. Herein, we leverage a machine learning technique alongside an atomic-coordinate-independent descriptor, SMILES, to yield the ELNES/XANES spectra, directly, with heightened precision. Moreover, our approach extends to obtain ground state electronic structure, namely PDOS at both occupied and unoccupied ground states, underscoring its viability for a ground-state spectroscopy. Our study revealed that incorporation of long-SMILES molecules into the training dataset enhances prediction accuracy for such molecular structures. This study's direct derivation of spectroscopy from SMILES strings holds promise for expediting spectroscopic inquiries.

摘要

电子能量损失近边结构/ X射线吸收近边结构(ELNES/XANES)光谱可以使用透射电子显微镜(TEM)或同步辐射来观测,并且能够阐明激发态的未占据态电子结构。由于需要进行结构优化和电子结构计算,计算它们的特征通常需要大量的计算资源。在此,我们利用机器学习技术以及与原子坐标无关的描述符SMILES,直接以更高的精度生成ELNES/XANES光谱。此外,我们的方法还可以扩展以获得基态电子结构,即在占据和未占据基态下的态密度(PDOS),这突出了其在基态光谱学中的可行性。我们的研究表明,将长SMILES分子纳入训练数据集可提高对此类分子结构的预测准确性。这项研究从SMILES字符串直接推导光谱学,有望加快光谱学研究。

相似文献

8
Core-hole effect in the ELNES of alpha-Al2O3: experiment and theory.
Ultramicroscopy. 2001 Feb;86(3-4):339-42. doi: 10.1016/s0304-3991(00)00124-8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验