Suppr超能文献

分子尺度几何设计:之字形结构的本征可拉伸聚合物半导体

Molecular-Scale Geometric Design: Zigzag-Structured Intrinsically Stretchable Polymer Semiconductors.

作者信息

Zhu Mingliang, Shao Zhihao, Li Yifan, Xiong Zihan, Yang Zhao, Chen Jinyang, Shi Wenkang, Wang Chengyu, Bian Yangshuang, Zhao Zhiyuan, Guo Yunlong, Liu Yunqi

机构信息

Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

出版信息

J Am Chem Soc. 2024 Oct 9;146(40):27429-27442. doi: 10.1021/jacs.4c07174. Epub 2024 Sep 30.

Abstract

Orienting intelligence and multifunction, stretchable semiconductors are of great significance in constructing next-generation human-friendly wearable electronic devices. Nevertheless, rendering semiconducting polymers mechanical stretchability without compromising intrinsic electrical performance remains a major challenge. Combining geometry-innovated inorganic systems and structure-tailored organic semiconductors, a molecular-scale geometric design strategy is proposed to obtain high-performance intrinsically stretchable polymer semiconductors. Originating from the linear regioregular conjugated polymer and corresponding -modified near-linear counterpart, a series of zigzag-structured semiconducting polymers are developed with diverse -type and -type kinking units quantitatively incorporated. They showcase huge edges in realizing stretchability enhancement for conformational transition, likewise with long-range π-aggregation and short-range torsion disorder taking effect. Assisted by additional heteroatom embedment and flexible alkyl-chain attachment, mechanical stretchability and carrier mobility could afford a two-way promotion. Among zigzag-structured species, -OC8-5% with the initial field-effect mobility up to 1.92 cm V s still delivers 1.43 and 1.37 cm V s under 100% strain with charge transport parallel and perpendicular to the stretching direction, respectively, accompanied by outstanding performance retention and cyclic stability. This molecular design strategy contributes to an in-depth exploration of prospective intrinsically stretchable semiconductors for cutting-edge electronic devices.

摘要

具有定向智能和多功能的可拉伸半导体对于构建下一代人性化可穿戴电子设备具有重要意义。然而,在不损害固有电学性能的情况下赋予半导体聚合物机械拉伸性仍然是一个重大挑战。结合几何创新的无机体系和结构定制的有机半导体,提出了一种分子尺度的几何设计策略来获得高性能的本征可拉伸聚合物半导体。源自线性区域规整共轭聚合物及其相应的近线性对应物,开发了一系列定量引入不同类型和类型扭结单元的之字形结构半导体聚合物。它们在通过构象转变实现拉伸性增强方面展现出巨大优势,同样伴随着长程π-聚集和短程扭转无序的作用。借助额外的杂原子嵌入和柔性烷基链连接,机械拉伸性和载流子迁移率可实现双向提升。在之字形结构的材料中,初始场效应迁移率高达1.92 cm² V⁻¹ s⁻¹的-OC8-5%在100%应变下,电荷分别沿平行和垂直于拉伸方向传输时,仍能分别提供1.43和1.37 cm² V⁻¹ s⁻¹的迁移率,同时具有出色的性能保持率和循环稳定性。这种分子设计策略有助于深入探索用于前沿电子设备的潜在本征可拉伸半导体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a79/11669081/cdb9ce0aafdd/ja4c07174_0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验