Chen Jinyang, Zhu Mingliang, Shao Mingchao, Shi Wenkang, Yang Jie, Kuang Junhua, Wang Chengyu, Gao Wenqiang, Zhu Can, Meng Ruifang, Yang Zhao, Shao Zhihao, Zhao Zhiyuan, Guo Yunlong, Liu Yunqi
Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Mater. 2024 Jan;36(4):e2305987. doi: 10.1002/adma.202305987. Epub 2023 Dec 4.
Multifunctional semiconductors integrating unique optical, electrical, mechanical, and chemical characteristics are critical to advanced and emerging manufacturing technologies. However, due to the trade-off challenges in design principles, fabrication difficulty, defects in existing materials, etc., realizing multiple functions through multistage manufacturing is quite taxing. Here, an effective molecular design strategy is established to prepare a class of multifunctional integrated polymer semiconductors. The pyridal[1,2,3]triazole-thiophene co-structured tetrapolymers with full-backbone coplanarity and considerable inter/intramolecular noncovalent interactions facilitate short-range order and excellent (re)organization capability of polymer chains, providing stress-dissipation sites in the film state. The regioregular multicomponent conjugated backbones contribute to dense packing, excellent crystallinity, high crack onset strain over 100%, efficient carrier transport with mobilities exceeding 1 cm V s , and controllable near-infrared luminescence. Furthermore, a homologous blending strategy is proposed to further enhance the color-tunable luminescent properties of polymers while effectively retaining mechanical and electrical properties. The blended system exhibits excellent field-effect mobility (µ) and quantum yield (Φ), reaching a record Φ · µ of 0.43 cm V s . Overall, the proposed strategy facilitates a rational design of regioregular semicrystalline intrinsically stretchable polymers with high mobility and color-tunable intense luminescence, providing unique possibilities for the development of multifunctional integrated semiconductors in organic optoelectronics.
集成独特光学、电学、机械和化学特性的多功能半导体对于先进和新兴制造技术至关重要。然而,由于设计原则中的权衡挑战、制造难度、现有材料中的缺陷等,通过多阶段制造实现多种功能相当费力。在此,建立了一种有效的分子设计策略来制备一类多功能集成聚合物半导体。具有全主链共面性和相当大的分子间/分子内非共价相互作用的吡啶并[1,2,3]三唑-噻吩共结构四聚物促进了聚合物链的短程有序和优异的(再)组织能力,在薄膜状态下提供了应力耗散位点。区域规整的多组分共轭主链有助于紧密堆积、优异的结晶度、超过100%的高裂纹起始应变、迁移率超过1 cm² V⁻¹ s⁻¹的高效载流子传输以及可控的近红外发光。此外,提出了一种同源共混策略,以进一步增强聚合物的颜色可调发光特性,同时有效保留机械和电学性能。共混体系表现出优异的场效应迁移率(µ)和量子产率(Φ),达到创纪录的Φ·µ为0.43 cm² V⁻¹ s⁻¹。总体而言,所提出的策略有助于合理设计具有高迁移率和颜色可调强发光的区域规整半结晶本征可拉伸聚合物,为有机光电子学中多功能集成半导体的发展提供了独特的可能性。