Liu Dayue, Yang Anning, Li Yulin, Li Zhenxian, You Peidong, Zhang Hongwen, Quan Shangkun, Sun Yue, Zeng Yaling, Ma Shengchao, Xiong Jiantuan, Hao Yinju, Li Guizhong, Liu Bin, Zhang Huiping, Jiang Yideng
Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.
J Pharm Anal. 2024 Sep;14(9):100937. doi: 10.1016/j.jpha.2024.01.005. Epub 2024 Jan 13.
Rosuvastatin (RVS) is an excellent drug with anti-inflammatory and lipid-lowering properties in the academic and medical fields. However, this drug faces a series of challenges when used to treat atherosclerosis caused by hyperhomocysteinemia (HHcy), including high oral dosage, poor targeting, and long-term toxic side effects. In this study, we applied nanotechnology to construct a biomimetic nano-delivery system, macrophage membrane (Møm)-coated RVS-loaded Prussian blue (PB) nanoparticles (MPR NPs), for improving the bioavailability and targeting capacity of RVS, specifically to the plaque lesions associated with HHcy-induced atherosclerosis. assays demonstrated that MPR NPs effectively inhibited the Toll-like receptor 4 (TLR4)/hypoxia-inducible factor-1α (HIF-1α)/nucleotide-binding and oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) signaling pathways, reducing pyroptosis and inflammatory response in macrophages. Additionally, MPR NPs reversed the abnormal distribution of adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)/ATP binding cassette transporter G1 (ABCA1)/ATP binding cassette transporter G1 (ABCG1) caused by HIF-1α, promoting cholesterol efflux and reducing lipid deposition. studies using apolipoprotein E knockout ( ) mice confirmed the strong efficacy of MPR NPs in treating atherosclerosis with favorable biosecurity, and the mechanism behind this efficacy is believed to involve the regulation of serum metabolism and the remodeling of gut microbes. These findings suggest that the synthesis of MPR NPs provides a promising nanosystem for the targeted therapy of HHcy-induced atherosclerosis.
瑞舒伐他汀(RVS)在学术和医学领域是一种具有抗炎和降脂特性的优秀药物。然而,该药物在用于治疗高同型半胱氨酸血症(HHcy)引起的动脉粥样硬化时面临一系列挑战,包括口服剂量高、靶向性差和长期毒副作用。在本研究中,我们应用纳米技术构建了一种仿生纳米递送系统,即巨噬细胞膜(Møm)包被的负载瑞舒伐他汀的普鲁士蓝(PB)纳米颗粒(MPR NPs),以提高瑞舒伐他汀的生物利用度和靶向能力,特别是针对与HHcy诱导的动脉粥样硬化相关的斑块病变。实验证明,MPR NPs有效抑制Toll样受体4(TLR4)/缺氧诱导因子-1α(HIF-1α)/核苷酸结合寡聚化结构域(NOD)样受体热蛋白结构域相关蛋白3(NLRP3)信号通路,减少巨噬细胞中的细胞焦亡和炎症反应。此外,MPR NPs逆转了由HIF-1α引起的三磷酸腺苷(ATP)结合盒转运体A1(ABCA1)/ATP结合盒转运体G1(ABCG1)的异常分布,促进胆固醇流出并减少脂质沉积。使用载脂蛋白E基因敲除( )小鼠的研究证实了MPR NPs在治疗动脉粥样硬化方面具有强大的疗效且生物安全性良好,并且认为这种疗效背后的机制涉及血清代谢的调节和肠道微生物的重塑。这些发现表明,MPR NPs的合成提供了一种有前景的纳米系统,用于HHcy诱导的动脉粥样硬化的靶向治疗。