Caro-Campos Irene, González-Barrios Marta María, Dura Oscar J, Fransson Erik, Plata Jose J, Ávila David, Sanz Javier Fdez, Prado-Gonjal Jesús, Márquez Antonio M
Departamento de Química Física, Facultad de Química, Universidad de Sevilla, E-41012 Seville, Spain.
Departamento de Química Inorgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
Chem Mater. 2024 Sep 4;36(18):8704-8713. doi: 10.1021/acs.chemmater.4c01343. eCollection 2024 Sep 24.
The exploration of large chemical spaces in search of new thermoelectric materials requires the integration of experiments, theory, simulations, and data science. The development of high-throughput strategies that combine DFT calculations with machine learning has emerged as a powerful approach to discovering new materials. However, experimental validation is crucial to confirm the accuracy of these workflows. This validation becomes especially important in understanding the transport properties that govern the thermoelectric performance of materials since they are highly influenced by synthetic, processing, and operating conditions. In this work, we explore the thermal conductivity of Cu-based sulvanites by using a combination of theoretical and experimental methods. Previous discrepancies and significant variations in reported data for CuVS and CuVSe are explained using the Boltzmann Transport Equation for phonons and by synthesizing well-characterized defect-free samples. The use of machine learning approaches for extracting high-order force constants opens doors to charting the lattice thermal conductivity across the entire Cu-based sulvanite family-finding not only materials with κ values below 2 W m K at moderate temperatures but also rationalizing their thermal transport properties based on chemical composition.
探索大型化学空间以寻找新型热电材料需要将实验、理论、模拟和数据科学相结合。将密度泛函理论(DFT)计算与机器学习相结合的高通量策略的发展,已成为发现新材料的有力方法。然而,实验验证对于确认这些工作流程的准确性至关重要。在理解决定材料热电性能的输运特性时,这种验证尤为重要,因为这些特性会受到合成、加工和操作条件的高度影响。在这项工作中,我们结合理论和实验方法来探索铜基硫钒铜矿的热导率。利用声子的玻尔兹曼输运方程,并通过合成特征明确的无缺陷样品,解释了之前报道的CuVS和CuVSe数据中的差异和显著变化。使用机器学习方法提取高阶力常数,为绘制整个铜基硫钒铜矿家族的晶格热导率图谱打开了大门,不仅能找到在中等温度下κ值低于2 W m⁻¹ K⁻¹的材料,还能根据化学成分合理化它们的热输运特性。