Harrat Randa, Bourzama Ghania, Sadrati Nouari, Zerroug Amina, Burgaud Gaëtan, Ouled-Haddar Houria, Soumati Boudjema
Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, P.o.Box 12, Annaba. 23000, Algeria.
Laboratory of Microbiology and Molecular Biology, Badji Mokhtar-Annaba University, P.o.Box 12, Annaba. 23000, Algeria.
Braz J Microbiol. 2024 Dec;55(4):3449-3463. doi: 10.1007/s42770-024-01487-8. Epub 2024 Sep 30.
Biodegradation poses a challenge for environmentalists and scientific community, offering a potential solution to the plastic waste problem. This study aims to investigate the biological degradation of low-density polyethylene (LDPE) bags by a fungus in both batch and continuous cultures, with the goal of identifying an eco-friendly and cost-effective waste management strategy. The fungal strain Rhizopus arrhizus SLNEA1, isolated from a landfill located in northeastern Algeria, was tested for its capability to degrade LDPE films and utilize them as a sole carbon source in batch (α-LDPE) and continuous (γ-LDPE) cultures. The results indicated a higher rate of weight loss for γ-LDPE (29.74%) compared to α-LDPE (23.77%). The biodegradation effect was examined using scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) to evaluate morphological and chemical changes in LDPE samples, highlighting alterations of LDPE films through cracks, veins and holes under SEM and chemical transformation and appearance of new functional groups in the FTIR data. Rhizopus arrhizus SLNEA1 demonstrated the ability to break down and utilize LDPE films as a carbon source. This isolate shows promise for LDPE biodegradation applications, which may be leveraged for the development of future plastic degradation systems involving fungi.
生物降解给环保主义者和科学界带来了挑战,同时也为塑料垃圾问题提供了一个潜在的解决方案。本研究旨在调查一种真菌在分批培养和连续培养中对低密度聚乙烯(LDPE)袋的生物降解情况,目标是确定一种环保且经济高效的废物管理策略。从阿尔及利亚东北部一个垃圾填埋场分离出的真菌菌株米根霉SLNEA1,在分批培养(α-LDPE)和连续培养(γ-LDPE)中测试其降解LDPE薄膜并将其用作唯一碳源的能力。结果表明,γ-LDPE的失重率(29.74%)高于α-LDPE(23.77%)。使用扫描电子显微镜(SEM)、能量色散X射线光谱(EDS)和衰减全反射傅里叶变换红外光谱(ATR-FTIR)检查生物降解效果,以评估LDPE样品的形态和化学变化,突出了SEM下LDPE薄膜通过裂缝、纹理和孔洞的变化以及FTIR数据中化学转化和新官能团的出现。米根霉SLNEA1表现出分解并利用LDPE薄膜作为碳源的能力。这种分离菌株在LDPE生物降解应用方面显示出前景,可用于未来涉及真菌的塑料降解系统的开发。