Marcilio-Jr Wilson E, Eler Danilo M, Paulovich Fernando V, Martins Rafael M
IEEE Trans Vis Comput Graph. 2024 Sep 30;PP. doi: 10.1109/TVCG.2024.3471181.
Dimensionality reduction (DR) techniques help analysts to understand patterns in high-dimensional spaces. These techniques, often represented by scatter plots, are employed in diverse science domains and facilitate similarity analysis among clusters and data samples. For datasets containing many granularities or when analysis follows the information visualization mantra, hierarchical DR techniques are the most suitable approach since they present major structures beforehand and details on demand. This work presents HUMAP, a novel hierarchical dimensionality reduction technique designed to be flexible on preserving local and global structures and preserve the mental map throughout hierarchical exploration. We provide empirical evidence of our technique's superiority compared with current hierarchical approaches and show a case study applying HUMAP for dataset labelling.
降维(DR)技术有助于分析人员理解高维空间中的模式。这些技术通常以散点图表示,应用于各种科学领域,并有助于进行聚类和数据样本之间的相似性分析。对于包含许多粒度的数据集,或者当分析遵循信息可视化原则时,分层DR技术是最合适的方法,因为它们会预先呈现主要结构并按需提供细节。本文介绍了HUMAP,这是一种新颖的分层降维技术,旨在灵活地保留局部和全局结构,并在整个分层探索过程中保留心理地图。我们提供了证据,证明我们的技术比当前的分层方法更具优越性,并展示了一个将HUMAP应用于数据集标记的案例研究。