Suppr超能文献

从高维到人类洞察:探索用于化学空间可视化的降维方法

From High Dimensions to Human Insight: Exploring Dimensionality Reduction for Chemical Space Visualization.

作者信息

Orlov Alexey A, Akhmetshin Tagir N, Horvath Dragos, Marcou Gilles, Varnek Alexandre

机构信息

Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 4, Blaise Pascal Str., 67000, Strasbourg, France.

出版信息

Mol Inform. 2025 Jan;44(1):e202400265. doi: 10.1002/minf.202400265. Epub 2024 Dec 5.

Abstract

Dimensionality reduction is an important exploratory data analysis method that allows high-dimensional data to be represented in a human-interpretable lower-dimensional space. It is extensively applied in the analysis of chemical libraries, where chemical structure data - represented as high-dimensional feature vectors-are transformed into 2D or 3D chemical space maps. In this paper, commonly used dimensionality reduction techniques - Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and Generative Topographic Mapping (GTM) - are evaluated in terms of neighborhood preservation and visualization capability of sets of small molecules from the ChEMBL database.

摘要

降维是一种重要的探索性数据分析方法,它能使高维数据在人类可解释的低维空间中得到表示。它在化学库分析中得到广泛应用,在化学库分析中,以高维特征向量表示的化学结构数据被转换为二维或三维化学空间图。本文从ChEMBL数据库中小分子集合的邻域保留和可视化能力方面,对常用的降维技术——主成分分析(PCA)、t分布随机邻域嵌入(t-SNE)、均匀流形近似与投影(UMAP)和生成地形映射(GTM)进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2125/11733715/68dabba65f2b/MINF-44-e202400265-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验