Park Jungeun, Scheler Ulrich, Messinger Robert J
Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, United States.
Center for Multi-Scale Characterization, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany.
Langmuir. 2024 Oct 15;40(41):21814-21823. doi: 10.1021/acs.langmuir.4c02997. Epub 2024 Sep 30.
Phase change materials (PCMs) are latent heat storage materials that can store or release thermal energy while undergoing thermodynamic phase transitions. Organic PCMs can be emulsified in water in the presence of surfactants to enhance thermal conductivity and enable applications as heat transfer fluids. However, PCM nanoemulsions often become unstable during thermal cycling. To better understand the molecular origins of phase stability in PCM nanoemulsions, we designed a model PCM nanoemulsion system and studied how the molecular-level environments and dynamics of the surfactants and oil phase changed upon thermal cycling using liquid-state nuclear magnetic resonance (NMR) spectroscopy. The model system used octadecane as the oil phase, stearic acid as the surfactant, and aqueous NaOH as the continuous phase. The liquid fraction of octadecane within the nanoemulsions was quantified noninvasively during thermal cycling by liquid-state H single-pulse NMR measurements, revealing the extent of octadecane supercooling as a function of temperature. The mean droplet size of the PCM nanoemulsions, measured by dynamic light scattering (DLS), was correlated with the liquid content of octadecane to explain phase instability in the solid-liquid coexistence region. Quantitative C single-pulse NMR experiments established that the carbonyl surfactant head groups were present in multiple distinct environments during thermal cycling. After repeated thermal cycling, the C signal intensity of the carbonyl surfactant head groups decreased, indicating that the surfactant head groups lost molecular mobility. The results explain, in part, the origin of phase instability of PCM nanoemulsions upon thermal cycling.
相变材料(PCM)是一种潜热存储材料,在经历热力学相变时能够存储或释放热能。在表面活性剂存在的情况下,有机相变材料可以在水中乳化,以提高热导率,并能够用作传热流体。然而,相变材料纳米乳液在热循环过程中往往会变得不稳定。为了更好地理解相变材料纳米乳液中相稳定性的分子起源,我们设计了一个模型相变材料纳米乳液系统,并使用液态核磁共振(NMR)光谱研究了热循环过程中表面活性剂和油相的分子水平环境及动力学是如何变化的。该模型系统使用十八烷作为油相,硬脂酸作为表面活性剂,氢氧化钠水溶液作为连续相。通过液态氢单脉冲核磁共振测量,在热循环过程中对纳米乳液中十八烷的液体部分进行了非侵入式定量分析,揭示了十八烷过冷程度随温度的变化情况。通过动态光散射(DLS)测量得到的相变材料纳米乳液的平均液滴尺寸与十八烷的液体含量相关,以解释固液共存区域中的相不稳定现象。定量碳单脉冲核磁共振实验表明,在热循环过程中,羰基表面活性剂头基存在于多个不同的环境中。经过反复热循环后,羰基表面活性剂头基的碳信号强度降低,表明表面活性剂头基失去了分子流动性。这些结果部分解释了相变材料纳米乳液在热循环时相不稳定的起源。