Suppr超能文献

基于随机重配置和线性方法的关联电子态变分优化量子算法

Quantum Algorithms for the Variational Optimization of Correlated Electronic States with Stochastic Reconfiguration and the Linear Method.

作者信息

Motta Mario, Sung Kevin J, Shee James

机构信息

IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States.

Department of Chemistry, Rice University, Houston, Texas 77005, United States.

出版信息

J Phys Chem A. 2024 Oct 10;128(40):8762-8776. doi: 10.1021/acs.jpca.4c02847. Epub 2024 Sep 30.

Abstract

Solving the electronic Schrodinger equation for strongly correlated ground states is a long-standing challenge. We present quantum algorithms for the variational optimization of wave functions correlated by products of unitary operators, such as Local Unitary Cluster Jastrow (LUCJ) ansatzes, using stochastic reconfiguration (SR) and the linear method (LM). While an implementation on classical computing hardware would require exponentially growing compute cost, the cost (number of circuits and shots) of our quantum algorithms is polynomial in system size. We find that classical simulations of optimization with the linear method consistently find lower energy solutions than with the L-BFGS-B optimizer across the dissociation curves of the notoriously difficult N and C dimers; LUCJ predictions of the ground-state energies deviate from exact diagonalization by 1 kcal/mol or less at all points on the potential energy curve. While we do characterize the effect of shot noise on the LM optimization, these noiseless results highlight the critical but often overlooked role that optimization techniques must play in attacking the electronic structure problem (on both classical and quantum hardware), for which even mean-field optimization is formally NP hard. We also discuss the challenge of obtaining smooth curves in these strongly correlated regimes, and propose a number of quantum-friendly solutions ranging from symmetry-projected ansatz forms to a symmetry-constrained optimization algorithm.

摘要

求解强关联基态的电子薛定谔方程是一个长期存在的挑战。我们提出了量子算法,用于通过酉算子乘积相关的波函数的变分优化,例如使用随机重配置(SR)和线性方法(LM)的局部酉簇贾斯特罗(LUCJ)假设。虽然在经典计算硬件上实现需要指数增长的计算成本,但我们的量子算法的成本(电路数量和测量次数)在系统大小上是多项式的。我们发现,在线性方法的优化经典模拟中,在臭名昭著的困难的N和C二聚体的解离曲线上,始终比使用L-BFGS-B优化器找到更低能量的解;在势能曲线上的所有点,LUCJ对基态能量的预测与精确对角化的偏差为1千卡/摩尔或更小。虽然我们确实表征了测量噪声对LM优化的影响,但这些无噪声结果突出了优化技术在解决电子结构问题(在经典和量子硬件上)中必须发挥的关键但经常被忽视的作用,即使是平均场优化在形式上也是NP难的。我们还讨论了在这些强关联区域获得平滑曲线的挑战,并提出了一些对量子友好的解决方案,从对称投影假设形式到对称约束优化算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验