Liepuoniute Ieva, Doney Kirstin D, Robledo Moreno Javier, Job Joshua A, Friend William S, Jones Gavin O
IBM Research─Almaden, IBM Quantum, 650 Harry Road, San Jose, California 95120, United States.
Lockheed Martin, 3251 Hanover Street, Palo Alto, California 94304, United States.
J Chem Theory Comput. 2025 May 27;21(10):5062-5070. doi: 10.1021/acs.jctc.5c00075. Epub 2025 May 13.
This study involves quantum simulations of the dissociation of the ground-state triplet and first excited singlet states of the CH molecule (methylene), which are relevant for interstellar and combustion chemistry. These were modeled as (6e, 23o) systems using 52 qubits on a quantum processor by applying the sample-based quantum diagonalization (SQD) method within a quantum-centric supercomputing framework. We evaluated the ability of SQD to provide accurate results of the singlet-triplet gap in comparison to selected configuration interaction (SCI) calculations and experimental values. To our knowledge, this is the first study of an open-shell system (the CH triplet) using SQD. To obtain accurate energy values, we implemented post-SQD orbital optimization and employed a warm-start approach using previously converged states. The results for the singlet state dissociation were highly accurate, differing by only a few milli-Hartrees from the SCI reference values. Similarly, the SQD-calculated singlet-triplet energy gap aligned well with both experimental and SCI values, underscoring the method's capability to capture key features of CH chemistry. However, the triplet state exhibited greater variability, likely due to differences in bit-string handling within the SQD method for open- versus closed-shell systems and the inherently complex wavefunction character of the triplet state. These findings highlight the strengths and limitations of SQD for modeling open-shell systems while laying a foundation for its application in large-scale electronic structure studies using quantum algorithms.
本研究涉及对CH分子(亚甲基)基态三重态和第一激发单重态解离的量子模拟,这与星际化学和燃烧化学相关。通过在以量子为中心的超级计算框架内应用基于样本的量子对角化(SQD)方法,将这些状态建模为(6e,23o)系统,并在量子处理器上使用52个量子比特。与选定的组态相互作用(SCI)计算和实验值相比,我们评估了SQD提供单重态 - 三重态能隙准确结果的能力。据我们所知,这是首次使用SQD对开壳层系统(CH三重态)进行的研究。为了获得准确的能量值,我们实施了SQD后轨道优化,并采用了使用先前收敛状态的热启动方法。单重态解离的结果非常准确,与SCI参考值仅相差几毫哈特里。同样,SQD计算的单重态 - 三重态能隙与实验值和SCI值都吻合得很好,突出了该方法捕捉CH化学关键特征的能力。然而,三重态表现出更大的变异性,这可能是由于SQD方法中开壳层与闭壳层系统在位串处理上的差异以及三重态固有的复杂波函数特性所致。这些发现突出了SQD在模拟开壳层系统方面的优势和局限性,同时为其在使用量子算法的大规模电子结构研究中的应用奠定了基础。