Suppr超能文献

基于证据的 III 期随机临床试验治疗效果估计先验。

Evidenced-Based Prior for Estimating the Treatment Effect of Phase III Randomized Trials in Oncology.

机构信息

Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.

Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX.

出版信息

JCO Precis Oncol. 2024 Oct;8:e2400363. doi: 10.1200/PO.24.00363. Epub 2024 Oct 2.

Abstract

PURPOSE

The primary results of phase III oncology trials may be challenging to interpret, given that results are generally based on value thresholds. The probability of whether a treatment is beneficial, although more intuitive, is not usually provided. Here, we developed and released a user-friendly tool that calculates the probability of treatment benefit using trial summary statistics.

METHODS

We curated 415 phase III randomized trials enrolling 338,600 patients published between 2004 and 2020. A phase III prior probability distribution for the treatment effect was developed on the basis of a three-component zero-mean mixture distribution of the observed z-scores. Using this prior, we computed the probability of clinically meaningful benefit (hazard ratio [HR] <0.8). The distribution of signal-to-noise ratios and power of phase III oncology trials were compared with that of 23,551 randomized trials from the Cochrane Database.

RESULTS

The signal-to-noise ratios of phase III oncology trials tended to be much larger than randomized trials from the Cochrane Database. Still, the median power of phase III oncology trials was only 49% (IQR, 14%-95%), and the power was <80% in 65% of trials. Using the phase III oncology-specific prior, only 53% of trials claiming superiority (114 of 216) had a ≥90% probability of clinically meaningful benefits. Conversely, the probability that the experimental arm was superior to the control arm (HR <1) exceeded 90% in 17% of trials interpreted as having no benefit (34 of 199).

CONCLUSION

By enabling computation of contextual probabilities for the treatment effect from summary statistics, our robust, highly practical tool, now posted on a user-friendly webpage, can aid the wider oncology community in the interpretation of phase III trials.

摘要

目的

鉴于结果通常基于价值阈值,因此,对于 III 期肿瘤学试验的主要结果进行解释可能具有挑战性。尽管治疗是否有益的概率更直观,但通常不提供。在这里,我们开发并发布了一个用户友好的工具,该工具使用试验汇总统计信息来计算治疗效果的获益概率。

方法

我们整理了 2004 年至 2020 年期间发表的 415 项 III 期随机试验,共纳入 338600 名患者。基于观察到的 z 分数的三组件零均值混合分布,开发了 III 期治疗效果的先验概率分布。使用此先验,我们计算了具有临床意义的获益概率(风险比 [HR] <0.8)。比较了 III 期肿瘤学试验的信号噪声比和功效分布与 Cochrane 数据库中 23551 项随机试验的分布。

结果

III 期肿瘤学试验的信号噪声比往往远大于 Cochrane 数据库中的随机试验。尽管如此,III 期肿瘤学试验的中位功效仅为 49%(IQR,14%-95%),并且在 65%的试验中功效<80%。使用 III 期肿瘤学特定的先验概率,只有 53%(114/216)声称具有优越性的试验具有≥90%的具有临床意义获益的概率。相反,在 17%(34/199)被解释为没有获益的试验中,实验臂优于对照臂(HR <1)的概率超过 90%。

结论

通过从汇总统计数据计算治疗效果的上下文概率,我们的强大且高度实用的工具,现在已发布在用户友好的网页上,可以帮助更广泛的肿瘤学社区解释 III 期试验。

相似文献

5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

本文引用的文献

1
A New Look at P Values for Randomized Clinical Trials.随机临床试验中 P 值的新视角。
NEJM Evid. 2024 Jan;3(1):EVIDoa2300003. doi: 10.1056/EVIDoa2300003. Epub 2023 Dec 22.
2
Bayesian (re)-Analyses of Clinical Trial Data.贝叶斯(再)分析临床试验数据。
NEJM Evid. 2023 Jan;2(1):EVIDe2200297. doi: 10.1056/EVIDe2200297. Epub 2022 Dec 27.
5
Interpreting Randomized Controlled Trials.解读随机对照试验
Cancers (Basel). 2023 Sep 22;15(19):4674. doi: 10.3390/cancers15194674.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验