自动化机器学习模型和特征工程在使用临床和计算机断层扫描结果诊断疑似阑尾炎中的效果。

Efficacy of automated machine learning models and feature engineering for diagnosis of equivocal appendicitis using clinical and computed tomography findings.

机构信息

Department of Emergency Medicine, Ajou University School of Medicine, World Cup-ro, Suwon, Gyeonggi-do, 16499, South Korea.

Department of Anesthesiology and Pain Medicine, Kangdong Sacred Hospital, Hallym University College of Medicine, Seongan-ro, Seoul, 05355, South Korea.

出版信息

Sci Rep. 2024 Sep 30;14(1):22658. doi: 10.1038/s41598-024-72889-9.

Abstract

This study evaluates the diagnostic efficacy of automated machine learning (AutoGluon) with automated feature engineering and selection (autofeat), focusing on clinical manifestations, and a model integrating both clinical manifestations and CT findings in adult patients with ambiguous computed tomography (CT) results for acute appendicitis (AA). This evaluation was compared with conventional single machine learning models such as logistic regression(LR) and established scoring systems such as the Adult Appendicitis Score(AAS) to address the gap in diagnostic approaches for uncertain AA cases. In this retrospective analysis of 303 adult patients with indeterminate CT findings, the cohort was divided into appendicitis (n = 115) and non-appendicitis (n = 188) groups. AutoGluon and autofeat were used for AA prediction. The AutoGluon-clinical model relied solely on clinical data, whereas the AutoGluon-clinical-CT model included both clinical and CT data. The area under the receiver operating characteristic curve (AUROC) and other metrics for the test dataset, namely accuracy, sensitivity, specificity, PPV, NPV, and F1 score, were used to compare AutoGluon models with single machine learning models and the AAS. The single ML models in this study were LR, LASSO regression, ridge regression, support vector machine, decision tree, random forest, and extreme gradient boosting. Feature importance values were extracted using the "feature_importance" attribute from AutoGluon. The AutoGluon-clinical model demonstrated an AUROC of 0.785 (95% CI 0.691-0.890), and the ridge regression model with only clinical data revealed an AUROC of 0.755 (95% CI 0.649-0.861). The AutoGluon-clinical-CT model (AUROC 0.886 with 95% CI 0.820-0.951) performed better than the ridge model using clinical and CT data (AUROC 0.852 with 95% CI 0.774-0.930, p = 0.029). A new feature, exp(-(duration from pain to CT) + rebound tenderness), was identified (importance = 0.049, p = 0.001). AutoML (AutoGluon) and autoFE (autofeat) enhanced the diagnosis of uncertain AA cases, particularly when combining CT and clinical findings. This study suggests the potential of integrating AutoML and autoFE in clinical settings to improve diagnostic strategies and patient outcomes and make more efficient use of healthcare resources. Moreover, this research supports further exploration of machine learning in diagnostic processes.

摘要

本研究评估了自动化机器学习(AutoGluon)与自动化特征工程和选择(autofeat)在诊断成人急性阑尾炎(AA)不确定 CT 结果中的表现,重点关注临床表现和整合临床表现与 CT 发现的模型。该评估与传统的单机器学习模型(如逻辑回归(LR))和既定评分系统(如成人阑尾炎评分(AAS))进行了比较,以解决不确定 AA 病例的诊断方法差距。在这项对 303 例不确定 CT 结果的成年患者的回顾性分析中,将队列分为阑尾炎(n=115)和非阑尾炎(n=188)组。使用 AutoGluon 和 autofeat 进行 AA 预测。AutoGluon-临床模型仅依赖于临床数据,而 AutoGluon-临床-CT 模型则同时包含临床和 CT 数据。使用测试数据集的接收者操作特征曲线下面积(AUROC)和其他指标(准确性、敏感性、特异性、PPV、NPV 和 F1 评分)比较了 AutoGluon 模型与单机器学习模型和 AAS。本研究中的单机器学习模型包括 LR、LASSO 回归、岭回归、支持向量机、决策树、随机森林和极端梯度提升。使用 AutoGluon 的“feature_importance”属性提取特征重要性值。AutoGluon-临床模型的 AUROC 为 0.785(95%CI 0.691-0.890),仅使用临床数据的岭回归模型的 AUROC 为 0.755(95%CI 0.649-0.861)。AutoGluon-临床-CT 模型(AUROC 为 0.886,95%CI 为 0.820-0.951)的性能优于使用临床和 CT 数据的岭模型(AUROC 为 0.852,95%CI 为 0.774-0.930,p=0.029)。确定了一个新特征,exp(-(疼痛到 CT 的持续时间)+反弹压痛)(重要性=0.049,p=0.001)。AutoML(AutoGluon)和 autoFE(autofeat)增强了不确定 AA 病例的诊断,尤其是当结合 CT 和临床发现时。本研究表明,在临床环境中整合 AutoML 和 autoFE 具有改善诊断策略和患者结局并更有效地利用医疗资源的潜力。此外,这项研究支持在诊断过程中进一步探索机器学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a3/11442641/1627161cf143/41598_2024_72889_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索