Suppr超能文献

基于堆叠集成学习算法的页岩气井最终采收率预测

Estimated ultimate recovery prediction of shale gas wells based on stacked integrated learning algorithm.

作者信息

Pang Min, Zhang Zheyuan, Zhou Zhaoming, Zhou Wendi, Li Qiong

机构信息

School of Economics and Management, Southwest Petroleum University, Chengdu, 610500, China.

School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, 610500, China.

出版信息

Sci Rep. 2025 Jun 2;15(1):19258. doi: 10.1038/s41598-025-03801-2.

Abstract

Accurately predicting the estimated ultimate recovery (EUR) of shale gas from a single well is challenging due to geological, engineering, and production factors. Conventional methods often lack sufficient transparency and clarity in the calculation process. As a result, machine learning (ML) algorithms have proven to be an effective alternative. Still, single algorithms are susceptible to outliers or feature selection in the data, leading to unstable predictions. Based on the concept of ensemble learning, this study proposes an intelligent method utilizing automated feature engineering (AutoFE) and stacking ensemble techniques. The method employs Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) as base learners, with Logistic Regression (LR) as the meta-learner. Furthermore, the model is optimized using the Tree-structured Parzen Estimator (TPE) algorithm. The proposed stacking ensemble learning model was validated using a publicly available dataset comprising 506 groups of EUR data of shale gas. The results demonstrate that the proposed stacking ensemble model outperforms individual machine learning models, achieving an R of 0.9456, an RMSE of 0.7432, and a MAPE as low as 4.36%. Furthermore, paired t-test results indicate that the use of AutoFE significantly enhances the predictive performance of the model. Furthermore, to enhance the interpretability of the prediction results, the Shapley Additive Explanations (SHAP) technique was employed to conduct an explainable analysis of the machine learning models. This approach revealed the influence trends and magnitudes of reservoir parameters and based learners on the prediction outcomes. The results further indicate that lateral length is the primary factor affecting EUR, followed by proppant loading. This study accurately predicts shale gas EUR and identifies key factors influencing the prediction results, providing valuable insights for predicting shale gas reservoir parameters and optimizing development plans.

摘要

由于地质、工程和生产因素,准确预测单井页岩气的估计最终采收量(EUR)具有挑战性。传统方法在计算过程中往往缺乏足够的透明度和清晰度。因此,机器学习(ML)算法已被证明是一种有效的替代方法。然而,单一算法易受数据中的异常值或特征选择影响,导致预测不稳定。基于集成学习的概念,本研究提出了一种利用自动特征工程(AutoFE)和堆叠集成技术的智能方法。该方法采用随机森林(RF)、支持向量机(SVM)和极端梯度提升(XGBoost)作为基学习器,逻辑回归(LR)作为元学习器。此外,使用树结构帕曾估计器(TPE)算法对模型进行优化。所提出的堆叠集成学习模型使用包含506组页岩气EUR数据的公开可用数据集进行了验证。结果表明,所提出的堆叠集成模型优于单个机器学习模型,R值为0.9456,均方根误差(RMSE)为0.7432,平均绝对百分比误差(MAPE)低至4.36%。此外,配对t检验结果表明,使用AutoFE显著提高了模型的预测性能。此外,为了增强预测结果的可解释性,采用了夏普利加法解释(SHAP)技术对机器学习模型进行可解释分析。该方法揭示了储层参数和基学习器对预测结果的影响趋势和大小。结果还表明,横向长度是影响EUR的主要因素,其次是支撑剂用量。本研究准确预测了页岩气EUR,并识别了影响预测结果的关键因素,为预测页岩气储层参数和优化开发方案提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7980/12130305/b9fefc6cffe7/41598_2025_3801_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验