School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
Sci Rep. 2024 Sep 30;14(1):22598. doi: 10.1038/s41598-024-74273-z.
Antimicrobial resistance (AMR) leads to a decrease in the adequacy of antimicrobial agents and an increase in the rate of adverse effects and mortality. The main objective of this project is to investigate the synergistic effect of BiAu@NCLin-T and its substructures as an antimicrobial photodynamic therapy (aPDT) agent to combat microbial resistance. In addition, the effect of photothermal therapy (PTT) on some of the designed nanostructures at a temperature of 40 °C was also tested. The antimicrobial test was carried out using the growth curve method against Escherichia coli and Staphylococcus aureus. Computational methods were used to investigate the stability and entropy of oligonucleotide sequence structures. Various analyses were performed to identify the nanostructures, including Ultraviolet-visible (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS) and fluorescence analysis. The BiAu@NCLin-T appeared the significant aPDT impact against the gram-negative E.coli strain at two distinctive oligonucleotide concentrations (1, and 1.5 micromolar (µM)). Based on the results, the outlined nanostructures can act as a photosensitizer (PS), a photothermal treatment (PTT) agent, and an antimicrobial agent to combat resistant bacteria.
抗菌药物耐药性(AMR)导致抗菌药物的有效性降低,不良反应和死亡率增加。本项目的主要目的是研究 BiAu@NCLin-T 及其亚结构作为抗菌光动力疗法(aPDT)药物的协同作用,以对抗微生物耐药性。此外,还测试了光热疗法(PTT)对一些设计的纳米结构在 40°C 温度下的影响。抗菌试验采用生长曲线法对抗大肠杆菌和金黄色葡萄球菌进行。计算方法用于研究寡核苷酸序列结构的稳定性和熵。进行了各种分析来鉴定纳米结构,包括紫外-可见(UV-vis)光谱、傅里叶变换红外光谱(FTIR)、动态光散射(DLS)、透射电子显微镜(TEM)、X 射线衍射(XRD)、扫描电子显微镜(SEM)、能谱分析(EDS)和荧光分析。BiAu@NCLin-T 在两种不同的寡核苷酸浓度(1 和 1.5 微摩尔(µM))下对革兰氏阴性大肠杆菌菌株表现出显著的 aPDT 影响。根据结果,所概述的纳米结构可以用作光敏剂(PS)、光热治疗(PTT)剂和抗菌剂,以对抗耐药细菌。