Suppr超能文献

纳米级金属有机框架封装锌酞菁光敏剂用于增强光动力疗法

Nanoscale Metal-Organic Framework Confines Zinc-Phthalocyanine Photosensitizers for Enhanced Photodynamic Therapy.

作者信息

Luo Taokun, Nash Geoffrey T, Xu Ziwan, Jiang Xiaomin, Liu Jianqiao, Lin Wenbin

机构信息

Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.

Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States.

出版信息

J Am Chem Soc. 2021 Sep 1;143(34):13519-13524. doi: 10.1021/jacs.1c07379. Epub 2021 Aug 23.

Abstract

The performance of photodynamic therapy (PDT) depends on the solubility, pharmacokinetic behaviors, and photophysical properties of photosensitizers (PSs). However, highly conjugated PSs with strong reactive oxygen species (ROS) generation efficiency tend to have poor solubility and aggregate in aqueous environments, leading to suboptimal PDT performance. Here, we report a new strategy to load highly conjugated but poorly soluble zinc-phthalocyanine (ZnP) PSs in the pores of a Hf-QC (QC = 2″,3'-dinitro-[1,1':4',1";4″,1'"-quaterphenyl]-4,4'"-dicarboxylate) nanoscale metal-organic framework to afford ZnP@Hf-QC with spatially confined ZnP PSs. ZnP@Hf-QC avoids aggregation-induced quenching of ZnP excited states to significantly enhance ROS generation upon light irradiation. With higher cellular uptake, enhanced ROS generation, and better biocompatibility, ZnP@Hf-QC mediated PDT exhibited an IC of 0.14 μM and achieved exceptional antitumor efficacy with >99% tumor growth inhibition and 80% cure rates on two murine colon cancer models.

摘要

光动力疗法(PDT)的疗效取决于光敏剂(PSs)的溶解度、药代动力学行为和光物理性质。然而,具有高活性氧(ROS)生成效率的高度共轭PSs往往在水性环境中溶解度较差且会发生聚集,导致PDT性能欠佳。在此,我们报道了一种新策略,即将高度共轭但难溶的锌酞菁(ZnP)PSs负载到Hf-QC(QC = 2″,3'-二硝基-[1,1':4',1";4″,1'"-四联苯]-4,4'"-二羧酸酯)纳米级金属有机框架的孔中,以得到具有空间受限ZnP PSs的ZnP@Hf-QC。ZnP@Hf-QC避免了ZnP激发态的聚集诱导猝灭,从而在光照时显著增强ROS的生成。凭借更高的细胞摄取、增强的ROS生成以及更好的生物相容性,ZnP@Hf-QC介导的PDT在两种小鼠结肠癌模型上表现出0.14 μM的半数抑制浓度(IC),并实现了超过99%的肿瘤生长抑制和80%的治愈率,展现出卓越的抗肿瘤疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f4f/8414475/25b661adfb31/ja1c07379_0001.jpg

相似文献

1
Nanoscale Metal-Organic Framework Confines Zinc-Phthalocyanine Photosensitizers for Enhanced Photodynamic Therapy.
J Am Chem Soc. 2021 Sep 1;143(34):13519-13524. doi: 10.1021/jacs.1c07379. Epub 2021 Aug 23.
2
Nanoscale Metal-Organic Layer Isolates Phthalocyanines for Efficient Mitochondria-Targeted Photodynamic Therapy.
J Am Chem Soc. 2021 Feb 10;143(5):2194-2199. doi: 10.1021/jacs.0c12330. Epub 2021 Feb 2.
3
Nanoscale Covalent Organic Framework with Staggered Stacking of Phthalocyanines for Mitochondria-Targeted Photodynamic Therapy.
J Am Chem Soc. 2024 Jan 10;146(1):849-857. doi: 10.1021/jacs.3c11092. Epub 2023 Dec 22.
4
Nanozyme Decorated Metal-Organic Framework Nanosheet for Enhanced Photodynamic Therapy Against Hypoxic Tumor.
Int J Nanomedicine. 2024 Sep 19;19:9727-9739. doi: 10.2147/IJN.S466011. eCollection 2024.
5
Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy.
Nanomedicine. 2021 Apr;33:102368. doi: 10.1016/j.nano.2021.102368. Epub 2021 Feb 3.
6
Photodynamic Therapy Based on Nanoscale Metal-Organic Frameworks: From Material Design to Cancer Nanotherapeutics.
Chem Asian J. 2018 Nov 2;13(21):3122-3149. doi: 10.1002/asia.201801221. Epub 2018 Oct 12.
7
A Nanoencapsulated Ir(III)-Phthalocyanine Conjugate as a Promising Photodynamic Therapy Anticancer Agent.
ACS Appl Mater Interfaces. 2024 Jul 31;16(30):38916-38930. doi: 10.1021/acsami.4c05181. Epub 2024 Jul 23.
8
Photosensitizers for Photodynamic Therapy.
Adv Healthc Mater. 2019 Jul;8(13):e1900132. doi: 10.1002/adhm.201900132. Epub 2019 May 8.
9
Transport of Zinc-Phthalocyanine to Cancer Cells Using Myoglobin-Albumin Fusion Protein for Photodynamic Therapy.
Chembiochem. 2024 Sep 2;25(17):e202400329. doi: 10.1002/cbic.202400329. Epub 2024 Aug 9.

引用本文的文献

1
Enhanced Nonaqueous Stability of Pseudomonas Cepacia Lipase Immobilized on Phthalocyanine-Dyed Absorbent Cotton.
Appl Biochem Biotechnol. 2025 Aug;197(8):5494-5510. doi: 10.1007/s12010-025-05295-0. Epub 2025 Jun 19.
3
How Traditional Chinese Medicine Can Play a Role In Nanomedicine? A Comprehensive Review of the Literature.
Int J Nanomedicine. 2025 May 20;20:6289-6315. doi: 10.2147/IJN.S518610. eCollection 2025.
4
Evolution of nMOFs in photodynamic therapy: from porphyrins to chlorins and bacteriochlorins for better efficacy.
Front Pharmacol. 2025 Mar 18;16:1533040. doi: 10.3389/fphar.2025.1533040. eCollection 2025.
6
Rational Design of Biocompatible Ir(III) Photosensitizer to Overcome Drug-Resistant Cancer via Oxidative Autophagy Inhibition.
Adv Sci (Weinh). 2025 Jan;12(2):e2407236. doi: 10.1002/advs.202407236. Epub 2024 Nov 14.
7
Bismuth-gold nanohybrid based nano photosensitizer to combat antimicrobial resistance.
Sci Rep. 2024 Sep 30;14(1):22598. doi: 10.1038/s41598-024-74273-z.
10
Chemically Mediated Artificial Electron Transport Chain.
ACS Cent Sci. 2024 Apr 10;10(6):1148-1155. doi: 10.1021/acscentsci.4c00165. eCollection 2024 Jun 26.

本文引用的文献

1
Antitumor Agents Based on Metal-Organic Frameworks.
Angew Chem Int Ed Engl. 2021 Jul 26;60(31):16763-16776. doi: 10.1002/anie.202102574. Epub 2021 Mar 23.
2
Supramolecular metal-based nanoparticles for drug delivery and cancer therapy.
Curr Opin Chem Biol. 2021 Apr;61:143-153. doi: 10.1016/j.cbpa.2021.01.005. Epub 2021 Feb 22.
3
Nanoscale Metal-Organic Layer Isolates Phthalocyanines for Efficient Mitochondria-Targeted Photodynamic Therapy.
J Am Chem Soc. 2021 Feb 10;143(5):2194-2199. doi: 10.1021/jacs.0c12330. Epub 2021 Feb 2.
5
Multifunctional metal-organic framework heterostructures for enhanced cancer therapy.
Chem Soc Rev. 2021 Jan 21;50(2):1188-1218. doi: 10.1039/d0cs00178c. Epub 2020 Dec 7.
6
Porphyrin-Based Metal-Organic Framework Compounds as Promising Nanomedicines in Photodynamic Therapy.
ChemMedChem. 2020 Oct 5;15(19):1766-1775. doi: 10.1002/cmdc.202000353. Epub 2020 Aug 31.
7
Clinical development and potential of photothermal and photodynamic therapies for cancer.
Nat Rev Clin Oncol. 2020 Nov;17(11):657-674. doi: 10.1038/s41571-020-0410-2. Epub 2020 Jul 22.
8
Cationic Versus Anionic Phthalocyanines for Photodynamic Therapy: What a Difference the Charge Makes.
J Med Chem. 2020 Jul 23;63(14):7616-7632. doi: 10.1021/acs.jmedchem.0c00481. Epub 2020 Jul 14.
9
Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment.
Adv Drug Deliv Rev. 2020;158:73-90. doi: 10.1016/j.addr.2020.06.006. Epub 2020 Jun 8.
10
Nanoscale Metal-Organic Frameworks Stabilize Bacteriochlorins for Type I and Type II Photodynamic Therapy.
J Am Chem Soc. 2020 Apr 22;142(16):7334-7339. doi: 10.1021/jacs.0c02129. Epub 2020 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验