Suppr超能文献

一种利用MRI上的放射组学和深度学习对非典型脂肪瘤与脂肪瘤进行分割和鉴别诊断的自动化方法的多中心外部验证

Multi-center external validation of an automated method segmenting and differentiating atypical lipomatous tumors from lipomas using radiomics and deep-learning on MRI.

作者信息

Spaanderman D J, Hakkesteegt S N, Hanff D F, Schut A R W, Schiphouwer L M, Vos M, Messiou C, Doran S J, Jones R L, Hayes A J, Nardo L, Abdelhafez Y G, Moawad A W, Elsayes K M, Lee S, Link T M, Niessen W J, van Leenders G J L H, Visser J J, Klein S, Grünhagen D J, Verhoef C, Starmans M P A

机构信息

Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands.

Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute Erasmus University Medical Center, Rotterdam, the Netherlands.

出版信息

EClinicalMedicine. 2024 Sep 18;76:102802. doi: 10.1016/j.eclinm.2024.102802. eCollection 2024 Oct.

Abstract

BACKGROUND

As differentiating between lipomas and atypical lipomatous tumors (ALTs) based on imaging is challenging and requires biopsies, radiomics has been proposed to aid the diagnosis. This study aimed to externally and prospectively validate a radiomics model differentiating between lipomas and ALTs on MRI in three large, multi-center cohorts, and extend it with automatic and minimally interactive segmentation methods to increase clinical feasibility.

METHODS

Three study cohorts were formed, two for external validation containing data from medical centers in the United States (US) collected from 2008 until 2018 and the United Kingdom (UK) collected from 2011 until 2017, and one for prospective validation consisting of data collected from 2020 until 2021 in the Netherlands. Patient characteristics, MDM2 amplification status, and MRI scans were collected. An automatic segmentation method was developed to segment all tumors on T1-weighted MRI scans of the validation cohorts. Segmentations were subsequently quality scored. In case of insufficient quality, an interactive segmentation method was used. Radiomics performance was evaluated for all cohorts and compared to two radiologists.

FINDINGS

The validation cohorts included 150 (54% ALT), 208 (37% ALT), and 86 patients (28% ALT) from the US, UK and NL. Of the 444 cases, 78% were automatically segmented. For 22%, interactive segmentation was necessary due to insufficient quality, with only 3% of all patients requiring manual adjustment. External validation resulted in an AUC of 0.74 (95% CI: 0.66, 0.82) in US data and 0.86 (0.80, 0.92) in UK data. Prospective validation resulted in an AUC of 0.89 (0.83, 0.96). The radiomics model performed similar to the two radiologists (US: 0.79 and 0.76, UK: 0.86 and 0.86, NL: 0.82 and 0.85).

INTERPRETATION

The radiomics model extended with automatic and minimally interactive segmentation methods accurately differentiated between lipomas and ALTs in two large, multi-center external cohorts, and in prospective validation, performing similar to expert radiologists, possibly limiting the need for invasive diagnostics.

FUNDING

Hanarth fonds.

摘要

背景

基于影像学区分脂肪瘤和非典型脂肪瘤性肿瘤(ALT)具有挑战性且需要活检,因此有人提出利用放射组学辅助诊断。本研究旨在对一个放射组学模型进行外部前瞻性验证,该模型可在三个大型多中心队列中通过磁共振成像(MRI)区分脂肪瘤和ALT,并采用自动和最少交互的分割方法对其进行扩展,以提高临床可行性。

方法

组建了三个研究队列,其中两个用于外部验证,包含来自美国医疗中心2008年至2018年收集的数据以及英国医疗中心2011年至2017年收集的数据,另一个用于前瞻性验证,由2020年至2021年在荷兰收集的数据组成。收集了患者特征、MDM2扩增状态和MRI扫描数据。开发了一种自动分割方法,用于在验证队列的T1加权MRI扫描上分割所有肿瘤。随后对分割结果进行质量评分。如果质量不足,则使用交互式分割方法。对所有队列评估放射组学性能,并与两名放射科医生的评估结果进行比较。

结果

验证队列分别包括来自美国、英国和荷兰的150例(54%为ALT)、208例(37%为ALT)和86例患者(28%为ALT)。在444例病例中,78%实现了自动分割。22%的病例因质量不足需要进行交互式分割,所有患者中只有3%需要人工调整。外部验证在美国数据中的曲线下面积(AUC)为0.74(95%置信区间:0.66,0.82),在英国数据中为0.86(0.80,0.92)。前瞻性验证的AUC为0.89(0.83,0.96)。放射组学模型的表现与两名放射科医生相似(美国:0.79和0.76,英国:0.86和0.86,荷兰:0.82和0.85)。

解读

采用自动和最少交互分割方法扩展后的放射组学模型,在两个大型多中心外部队列以及前瞻性验证中,能够准确区分脂肪瘤和ALT,表现与放射科专家相似,可能减少侵入性诊断的需求。

资金来源

哈纳特基金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a804/11440245/b171cce56b64/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验