Department of Biomedical Engineering, University of California, Davis, CA, USA.
Department of Radiology, UC Davis Health, Sacramento, CA, USA.
J Digit Imaging. 2023 Jun;36(3):1049-1059. doi: 10.1007/s10278-023-00785-1. Epub 2023 Feb 28.
Deep learning (DL) has been proposed to automate image segmentation and provide accuracy, consistency, and efficiency. Accurate segmentation of lipomatous tumors (LTs) is critical for correct tumor radiomics analysis and localization. The major challenge of this task is data heterogeneity, including tumor morphological characteristics and multicenter scanning protocols. To mitigate the issue, we aimed to develop a DL-based Super Learner (SL) ensemble framework with different data correction and normalization methods. Pathologically proven LTs on pre-operative T1-weighted/proton-density MR images of 185 patients were manually segmented. The LTs were categorized by tumor locations as distal upper limb (DUL), distal lower limb (DLL), proximal upper limb (PUL), proximal lower limb (PLL), or Trunk (T) and grouped by 80%/9%/11% for training, validation and testing. Six configurations of correction/normalization were applied to data for fivefold-cross-validation trainings, resulting in 30 base learners (BLs). A SL was obtained from the BLs by optimizing SL weights. The performance was evaluated by dice-similarity-coefficient (DSC), sensitivity, specificity, and Hausdorff distance (HD95). For predictions of the BLs, the average DSC, sensitivity, and specificity from the testing data were 0.72 [Formula: see text] 0.16, 0.73 [Formula: see text] 0.168, and 0.99 [Formula: see text] 0.012, respectively, while for SL predictions were 0.80 [Formula: see text] 0.184, 0.78 [Formula: see text] 0.193, and 1.00 [Formula: see text] 0.010. The average HD95 of the BLs were 11.5 (DUL), 23.2 (DLL), 25.9 (PUL), 32.1 (PLL), and 47.9 (T) mm, whereas of SL were 1.7, 8.4, 15.9, 2.2, and 36.6 mm, respectively. The proposed method could improve the segmentation accuracy and mitigate the performance instability and data heterogeneity aiding the differential diagnosis of LTs in real clinical situations.
深度学习(DL)已被提议用于自动图像分割,并提供准确性、一致性和效率。准确分割脂肪瘤(LT)对于正确的肿瘤放射组学分析和定位至关重要。该任务的主要挑战是数据异质性,包括肿瘤形态特征和多中心扫描方案。为了缓解这个问题,我们旨在开发一个基于深度学习的超级学习者(SL)集成框架,该框架具有不同的数据校正和归一化方法。对 185 名患者术前 T1 加权/质子密度磁共振图像上的 LT 进行了手动分割。LT 根据肿瘤位置分为远端上肢(DUL)、远端下肢(DLL)、近端上肢(PUL)、近端下肢(PLL)或躯干(T),并按 80%/9%/11%分组进行训练、验证和测试。对数据应用了六种校正/归一化配置,用于五重交叉验证训练,产生了 30 个基础学习者(BL)。通过优化 SL 权重,从 BL 中获得一个 SL。通过 Dice 相似系数(DSC)、灵敏度、特异性和 Hausdorff 距离(HD95)评估性能。对于 BL 的预测,来自测试数据的平均 DSC、灵敏度和特异性分别为 0.72 [公式:见文本] 0.16、0.73 [公式:见文本] 0.168 和 0.99 [公式:见文本] 0.012,而对于 SL 的预测分别为 0.80 [公式:见文本] 0.184、0.78 [公式:见文本] 0.193 和 1.00 [公式:见文本] 0.010。BL 的平均 HD95 分别为 11.5(DUL)、23.2(DLL)、25.9(PUL)、32.1(PLL)和 47.9(T)mm,而 SL 的分别为 1.7、8.4、15.9、2.2 和 36.6mm。所提出的方法可以提高分割准确性,并缓解性能不稳定和数据异质性,有助于在实际临床情况下对 LT 进行鉴别诊断。