Asin-Garcia Enrique, Martin-Pascual Maria, de Buck Claudia, Allewijn Max, Müller Alexandra, Martins Dos Santos Vitor A P
Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands.
Bioprocess Engineering Group, Wageningen University & Research, Wageningen, Netherlands.
Front Bioeng Biotechnol. 2024 Sep 16;12:1426107. doi: 10.3389/fbioe.2024.1426107. eCollection 2024.
Synthetic genetic circuits have revolutionised our capacity to control cell viability by conferring microorganisms with programmable functionalities to limit survival to specific environmental conditions. Here, we present the GenoMine safeguard, a CRISPR-Cas9-based kill switch for the biotechnological workhorse that employs repetitive genomic elements as cleavage targets to unleash a highly genotoxic response. To regulate the system's activation, we tested various circuit-based mechanisms including the digitalised version of an inducible expression system that operates at the transcriptional level and different options of post-transcriptional riboregulators. All of them were applied not only to directly control Cas9 and its lethal effects, but also to modulate the expression of two of its inhibitors: the AcrIIA4 anti-CRISPR protein and the transcriptional repressor TetR. Either upon direct induction of the endonuclease or under non-induced conditions of its inhibitors, the presence of Cas9 suppressed cell survival which could be exploited beyond biocontainment in situations where further CRISPR genome editing is undesirable.
合成基因电路通过赋予微生物可编程功能,使其仅在特定环境条件下存活,从而彻底改变了我们控制细胞活力的能力。在此,我们展示了GenoMine安全防护系统,这是一种基于CRISPR-Cas9的用于生物技术主力菌株的致死开关,它利用重复基因组元件作为切割靶点,引发高度基因毒性反应。为了调节系统的激活,我们测试了各种基于电路的机制,包括在转录水平运行的诱导表达系统的数字化版本以及转录后核糖调节因子的不同选项。所有这些机制不仅用于直接控制Cas9及其致死效应,还用于调节其两种抑制剂的表达:AcrIIA4抗CRISPR蛋白和转录阻遏物TetR。无论是在内切酶直接诱导后还是在其抑制剂的非诱导条件下,Cas9的存在都会抑制细胞存活,这在不希望进行进一步CRISPR基因组编辑的情况下,除了生物遏制之外还可加以利用。