Suppr超能文献

通过在金上进行气相传输沉积在纳米级碲元素中实现非易失性电阻切换

Non-Volatile Resistive Switching in Nanoscaled Elemental Tellurium by Vapor Transport Deposition on Gold.

作者信息

Ghomi Sara, Martella Christian, Lee Yoonseok, Chang Penny Hui-Ping, Targa Paolo, Serafini Andrea, Codegoni Davide, Massetti Chiara, Gharedaghi Sepideh, Lamperti Alessio, Grazianetti Carlo, Akinwande Deji, Molle Alessandro

机构信息

CNR IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, 20864, Italy.

Dipartimento di Energia, Politecnico di Milano, via Ponzio 34/3, Milano, 20133, Italy.

出版信息

Adv Sci (Weinh). 2025 Jan;12(1):e2406703. doi: 10.1002/advs.202406703. Epub 2024 Oct 1.

Abstract

Two-dimensional (2D) materials are promising for resistive switching in neuromorphic and in-memory computing, as their atomic thickness substantially improve the energetic budget of the device and circuits. However, many 2D resistive switching materials struggle with complex growth methods or limited scalability. 2D tellurium exhibits striking characteristics such as simplicity in chemistry, structure, and synthesis making it suitable for various applications. This study reports the first memristor design based on nanoscaled tellurium synthesized by vapor transport deposition (VTD) at a temperature as low as 100 °C fully compatible with back-end-of-line processing. The resistive switching behavior of tellurium nanosheets is studied by conductive atomic force microscopy, providing valuable insights into its memristive functionality, supported by microscale device measurements. Selecting gold as the substrate material enhances the memristive behavior of nanoscaled tellurium in terms of reduced values of set voltage and energy consumption. In addition, formation of conductive paths leading to resistive switching behavior on the gold substrate is driven by gold-tellurium interface reconfiguration during the VTD process as revealed by energy electron loss spectroscopy analysis. These findings reveal the potential of nanoscaled tellurium as a versatile and scalable material for neuromorphic computing and underscore the influential role of gold electrodes in enhancing its memristive performance.

摘要

二维(2D)材料在神经形态和内存计算中的电阻开关方面具有广阔前景,因为其原子厚度显著改善了器件和电路的能量预算。然而,许多二维电阻开关材料面临着复杂的生长方法或有限的可扩展性问题。二维碲具有显著的特性,如化学、结构和合成方面的简单性,使其适用于各种应用。本研究报告了首个基于通过气相传输沉积(VTD)在低至100°C的温度下合成的纳米级碲的忆阻器设计,该设计与后端制程完全兼容。通过导电原子力显微镜研究了碲纳米片的电阻开关行为,并通过微观器件测量为其忆阻功能提供了有价值的见解。选择金作为衬底材料在降低设定电压值和能耗方面增强了纳米级碲的忆阻行为。此外,能量电子损失谱分析表明,在VTD过程中,金-碲界面的重新配置驱动了在金衬底上导致电阻开关行为的导电路径的形成。这些发现揭示了纳米级碲作为神经形态计算中一种通用且可扩展材料的潜力,并强调了金电极在增强其忆阻性能方面的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/11714190/70243ad25d43/ADVS-12-2406703-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验