Suppr超能文献

探索在线心理健康匹配的权衡:基于代理的建模研究。

Exploring Trade-Offs for Online Mental Health Matching: Agent-Based Modeling Study.

机构信息

Department of Computer Science, Princeton University, Princeton, NJ, United States.

Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, United States.

出版信息

JMIR Form Res. 2024 Oct 1;8:e58241. doi: 10.2196/58241.

Abstract

BACKGROUND

Online mental health communities (OMHCs) are an effective and accessible channel to give and receive social support for individuals with mental and emotional issues. However, a key challenge on these platforms is finding suitable partners to interact with given that mechanisms to match users are currently underdeveloped or highly naive.

OBJECTIVE

In this study, we collaborated with one of the world's largest OMHCs; our contribution is to show the application of agent-based modeling for the design of online community matching algorithms. We developed an agent-based simulation framework and showcased how it can uncover trade-offs in different matching algorithms between people seeking support and volunteer counselors.

METHODS

We used a comprehensive data set spanning January 2020 to April 2022 to create a simulation framework based on agent-based modeling that replicates the current matching mechanisms of our research site. After validating the accuracy of this simulated replication, we used this simulation framework as a "sandbox" to test different matching algorithms based on the deferred acceptance algorithm. We compared trade-offs among these different matching algorithms based on various metrics of interest, such as chat ratings and matching success rates.

RESULTS

Our study suggests that various tensions emerge through different algorithmic choices for these communities. For example, our simulation uncovered that increased waiting time for support seekers was an inherent consequence on these sites when intelligent matching was used to find more suitable matches. Our simulation also verified some intuitive effects, such as that the greatest number of support seeker-counselor matches occurred using a "first come, first served" protocol, whereas relatively fewer matches occurred using a "last come, first served" protocol. We also discuss practical findings regarding matching for vulnerable versus overall populations. Results by demographic group revealed disparities-underaged and gender minority groups had lower average chat ratings and higher blocking rates on the site when compared to their majority counterparts, indicating the potential benefits of algorithmically matching them. We found that some protocols, such as a "filter"-based approach that matched vulnerable support seekers only with a counselor of their same demographic, led to improvements for these groups but resulted in lower satisfaction (-12%) among the overall population. However, this trade-off between minority and majority groups was not observed when using "topic" as a matching criterion. Topic-based matching actually outperformed the filter-based protocol among underaged people and led to significant improvements over the status quo among all minority and majority groups-specifically, a 6% average chat rating improvement and a decrease in blocking incidents from 5.86% to 4.26%.

CONCLUSIONS

Agent-based modeling can reveal significant design considerations in the OMHC context, including trade-offs in various outcome metrics and the potential benefits of algorithmic matching for marginalized communities.

摘要

背景

在线心理健康社区(OMHC)是为有心理和情绪问题的个人提供和接受社会支持的有效且可及的渠道。然而,这些平台上的一个关键挑战是找到合适的合作伙伴进行互动,因为目前用户匹配机制还不够发达或非常不成熟。

目的

在这项研究中,我们与世界上最大的 OMHC 之一合作;我们的贡献是展示基于代理的建模在在线社区匹配算法设计中的应用。我们开发了一个基于代理的仿真框架,并展示了它如何在寻求支持的人和志愿者顾问之间揭示不同匹配算法之间的权衡。

方法

我们使用了一个涵盖 2020 年 1 月至 2022 年 4 月的数据来创建一个基于代理的建模的仿真框架,该框架复制了我们研究网站的当前匹配机制。在验证了这个模拟复制的准确性之后,我们使用这个仿真框架作为“沙盒”来测试基于延迟接受算法的不同匹配算法。我们根据各种感兴趣的指标,如聊天评分和匹配成功率,比较了这些不同匹配算法之间的权衡。

结果

我们的研究表明,这些社区的不同算法选择会产生各种紧张关系。例如,我们的模拟发现,当使用智能匹配来找到更合适的匹配时,支持寻求者的等待时间增加是这些网站的固有后果。我们的模拟还验证了一些直观的效果,例如,使用“先来先服务”协议时,支持寻求者与顾问的匹配最多,而使用“后来先服务”协议时,匹配相对较少。我们还讨论了针对弱势群体和整体人群的匹配的实际发现。按人口统计分组的结果表明,与大多数同龄人相比,未成年人和少数性别群体在网站上的平均聊天评分较低,阻止率较高,这表明算法匹配他们可能会带来好处。我们发现,一些协议,例如仅将弱势支持寻求者与具有相同人口统计学特征的顾问相匹配的“筛选”方法,会改善这些群体的状况,但会导致整体人群的满意度降低(-12%)。然而,在使用“主题”作为匹配标准时,这种少数群体和多数群体之间的权衡关系并不明显。主题匹配实际上在未成年人群体中优于基于筛选的协议,并在所有少数群体和多数群体中带来了显著的改进-具体而言,聊天评分平均提高了 6%,阻止事件从 5.86%下降到 4.26%。

结论

基于代理的建模可以揭示 OMHC 背景下的重要设计考虑因素,包括各种结果指标的权衡以及算法匹配对边缘化社区的潜在好处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a3c/11480686/6038a66509a4/formative_v8i1e58241_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验