Suppr超能文献

基于太赫兹光谱的生化物质检测与识别智能传感平台。

An intelligent sensing platform for detecting and identifying biochemical substances based on terahertz spectra.

机构信息

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing, 100871, PR China; School of Integrated Circuits, Peking University, Beijing, 100871, PR China.

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing, 100871, PR China; School of Integrated Circuits, Peking University, Beijing, 100871, PR China.

出版信息

Talanta. 2025 Jan 1;282:126950. doi: 10.1016/j.talanta.2024.126950. Epub 2024 Sep 27.

Abstract

This paper presents the development of an intelligent sensing platform dedicated to accurately identifying terahertz (THz) spectra obtained from various biochemical substances. The platform currently has two distinct identification modes, which focus on identifying five amino acids, namely phenylalanine, methionine, lysine, leucine, and threonine, and five carbohydrates, namely aspartame, fructose, glucose, lactose monohydrate, and sucrose based on their THz spectra. The first mode, called One-dimensional THz Spectrum Identification (OTSI), combines THz time-domain spectroscopy (THz-TDS) with the proposed mini convolutional neural network (MCNN) model. THz-TDS detects biochemical substances, while the MCNN model identifies the THz spectra. The MCNN model has a simple structure and only needs to deal with the THz absorption coefficients of biochemical substances, which are less computationally intensive and easily converged. The model can achieve 99.07 % accuracy in identifying one-dimensional THz spectra of the ten biochemical substances. The second mode, THz Spectrum Image-based Identification (TSII), applies the YOLO-v5 target detection model to THz spectral image recognition. The YOLO-v5 model uses THz absorption peaks as identification features and can identify biochemical substances based on only one or several THz absorption peaks. The overall identifying accuracy of the YOLO-v5 model for ten biochemical substances is 96.20 %. We also compared the MCNN and YOLO-v5 models with other deep learning and machine learning models, which demonstrate that they have better performance. This feature broadens the platform's utility in biomolecular analysis and paves the way for further research and development in detecting and analyzing diverse biological compounds.

摘要

本文提出了一种智能传感平台的开发,该平台专门用于准确识别来自各种生化物质的太赫兹(THz)光谱。该平台目前有两种不同的识别模式,分别聚焦于识别五种氨基酸(苯丙氨酸、甲硫氨酸、赖氨酸、亮氨酸和苏氨酸)和五种碳水化合物(阿斯巴甜、果糖、葡萄糖、乳糖一水合物和蔗糖),其依据是它们的太赫兹光谱。第一种模式称为一维太赫兹光谱识别(OTSI),它结合了太赫兹时域光谱(THz-TDS)和所提出的迷你卷积神经网络(MCNN)模型。THz-TDS 用于检测生化物质,而 MCNN 模型则用于识别太赫兹光谱。MCNN 模型结构简单,只需处理生化物质的太赫兹吸收系数,计算量较小,易于收敛。该模型在识别十种生化物质的一维太赫兹光谱方面的准确率达到 99.07%。第二种模式称为太赫兹光谱图像识别(TSII),它将 YOLO-v5 目标检测模型应用于太赫兹光谱图像识别。YOLO-v5 模型使用太赫兹吸收峰作为识别特征,仅根据一个或几个太赫兹吸收峰即可识别生化物质。YOLO-v5 模型对十种生化物质的整体识别准确率为 96.20%。我们还将 MCNN 和 YOLO-v5 模型与其他深度学习和机器学习模型进行了比较,结果表明它们具有更好的性能。这一特点拓宽了该平台在生物分子分析中的应用,并为进一步研究和开发检测和分析各种生物化合物铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验