Suppr超能文献

基于陆地卫星数据,利用带超参数调优的机器学习算法对亚热带森林地上碳储量进行时空估计。

Landsat-based spatiotemporal estimation of subtropical forest aboveground carbon storage using machine learning algorithms with hyperparameter tuning.

作者信息

Huang Lei, Huang Zihao, Zhou Weilong, Wu Sumei, Li Xuejian, Mao Fangjie, Song Meixuan, Zhao Yinyin, Lv Lujin, Yu Jiacong, Du Huaqiang

机构信息

State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.

Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China.

出版信息

Front Plant Sci. 2024 Aug 29;15:1421567. doi: 10.3389/fpls.2024.1421567. eCollection 2024.

Abstract

INTRODUCTION

The aboveground carbon storage (AGC) in forests serves as a crucial metric for evaluating both the composition of the forest ecosystem and the quality of the forest. It also plays a significant role in assessing the quality of regional ecosystems. However, current technical limitations introduce a degree of uncertainty in estimating forest AGC at a regional scale. Despite these challenges, remote sensing technology provides an accurate means of monitoring forest AGC. Furthermore, the implementation of machine learning algorithms can enhance the precision of AGC estimates. Lishui City, with its rich forest resources and an approximate forest coverage rate of 80%, serves as a representative example of the typical subtropical forest distribution in Zhejiang Province.

METHODS

Therefore, this study uses Landsat remote sensing images, employing backpropagation neural network (BPNN), random forest (RF), and categorical boosting (CatBoost) to model the forest AGC of Lishui City, selecting the best model to estimate and analyze its forest AGC spatiotemporal dynamics over the past 30 years (1989-2019).

RESULTS

The study shows that: (1) The texture information calculated based on 9×9 and 11×11 windows is an important variable in constructing the remote sensing estimation model of the forest AGC in Lishui City; (2) All three machine learning techniques are capable of estimating forest AGC in Lishui City with high precision. Notably, the CatBoost algorithm outperforms the others in terms of accuracy, achieving a model training accuracy and testing accuracy R of 0.95 and 0.83, and RMSE of 2.98 Mg C ha and 4.93 Mg C ha, respectively. (3) Spatially, the central and southwestern regions of Lishui City exhibit high levels of forest AGC, whereas the eastern and northeastern regions display comparatively lower levels. Over time, there has been a consistent increase in the total forest AGC in Lishui City over the past three decades, escalating from 1.36×10 Mg C in 1989 to 6.16×10 Mg C in 2019.

DISCUSSION

This study provided a set of effective hyperparameters and model of machine learning suitable for subtropical forests and a reference data for improving carbon sequestration capacity of subtropical forests in Lishui City.

摘要

引言

森林地上碳储量(AGC)是评估森林生态系统组成和森林质量的关键指标。它在评估区域生态系统质量方面也发挥着重要作用。然而,当前的技术限制在区域尺度上估算森林AGC时引入了一定程度的不确定性。尽管存在这些挑战,遥感技术提供了一种监测森林AGC的准确方法。此外,机器学习算法的应用可以提高AGC估算的精度。丽水市森林资源丰富,森林覆盖率约为80%,是浙江省典型亚热带森林分布的代表。

方法

因此,本研究使用Landsat遥感影像,采用反向传播神经网络(BPNN)、随机森林(RF)和分类提升(CatBoost)对丽水市森林AGC进行建模,选择最佳模型来估算和分析其过去30年(1989 - 2019年)的森林AGC时空动态。

结果

研究表明:(1)基于9×9和11×11窗口计算的纹理信息是构建丽水市森林AGC遥感估算模型的重要变量;(2)所有三种机器学习技术都能够高精度地估算丽水市森林AGC。值得注意的是,CatBoost算法在准确性方面优于其他算法,模型训练准确率和测试准确率R分别达到0.95和0.83,均方根误差分别为2.98 Mg C/ha和4.93 Mg C/ha;(3)在空间上,丽水市中部和西南部地区森林AGC水平较高,而东部和东北部地区相对较低。随着时间的推移,丽水市森林AGC总量在过去三十年中持续增加,从1989年的1.36×10 Mg C增加到2019年的6.16×10 Mg C。

讨论

本研究提供了一组适用于亚热带森林的有效机器学习超参数和模型,以及提高丽水市亚热带森林碳固存能力的参考数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80df/11443464/1a1c3bb9a069/fpls-15-1421567-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验