Huffman Derek J
Department of Psychology, Colby College, Waterville, ME 04901.
J Undergrad Neurosci Educ. 2024 Aug 31;22(3):A273-A288. doi: 10.59390/ZABM1739. eCollection 2024 Spring.
Functional magnetic resonance imaging (fMRI) has been a cornerstone of cognitive neuroscience since its invention in the 1990s. The methods that we use for fMRI data analysis allow us to test different theories of the brain, thus different analyses can lead us to different conclusions about how the brain produces cognition. There has been a centuries-long debate about the nature of neural processing, with some theories arguing for functional specialization or localization (e.g., face and scene processing) while other theories suggest that cognition is implemented in distributed representations across many neurons and brain regions. Importantly, these theories have received support via different types of analyses; therefore, having students implement hands-on data analysis to explore the results of different fMRI analyses can allow them to take a firsthand approach to thinking about highly influential theories in cognitive neuroscience. Moreover, these explorations allow students to see that there are not clearcut "right" or "wrong" answers in cognitive neuroscience, rather we effectively instantiate assumptions within our analytical approaches that can lead us to different conclusions. Here, I provide Python code that uses freely available software and data to teach students how to analyze fMRI data using traditional activation analysis and machine-learning-based multivariate pattern analysis (MVPA). Altogether, these resources help teach students about the paramount importance of methodology in shaping our theories of the brain, and I believe they will be helpful for introductory undergraduate courses, graduate-level courses, and as a first analysis for people working in labs that use fMRI.
自20世纪90年代功能磁共振成像(fMRI)发明以来,它一直是认知神经科学的基石。我们用于fMRI数据分析的方法使我们能够检验关于大脑的不同理论,因此不同的分析可能会使我们对大脑如何产生认知得出不同的结论。关于神经处理的本质存在长达几个世纪的争论,一些理论主张功能专门化或定位(例如,面部和场景处理),而其他理论则认为认知是通过许多神经元和脑区的分布式表征来实现的。重要的是,这些理论通过不同类型的分析得到了支持;因此,让学生进行实际的数据分析以探索不同fMRI分析的结果,可以使他们以第一手的方式思考认知神经科学中极具影响力的理论。此外,这些探索让学生明白,在认知神经科学中并没有明确的“对”或“错”答案,相反,我们在分析方法中有效地实例化了假设,这些假设可能会导致我们得出不同的结论。在这里,我提供了Python代码,它使用免费软件和数据来教学生如何使用传统激活分析和基于机器学习的多变量模式分析(MVPA)来分析fMRI数据。总之,这些资源有助于教导学生认识到方法学在塑造我们的大脑理论方面的至关重要性,我相信它们对本科入门课程、研究生课程以及在使用fMRI的实验室工作的人员进行首次分析都会有所帮助。