Dupuis Freddy, Shlyonsky Vadim, de Prelle Bertrand, Gall David
Laboratoire d'Enseignement de la Physique, Faculté de Médecine, Université libre de Bruxelles, Bruxelles, Belgium, 1070.
J Undergrad Neurosci Educ. 2024 Aug 31;22(3):A207-A216. doi: 10.59390/MIUV3158. eCollection 2024 Spring.
Stringent animal welfare principles are forcing undergraduate instructors to avoid the use of animals. Therefore, many hands-on lab sessions using laboratory animals are progressively replaced by computer simulations. These versatile software simulations permit the observation of the behavior of biological systems under a great variety of experimental conditions. While this versatility is important, computer simulations often work even when a student makes wrong assumptions, a situation that poses its own pedagogical problem. Hands-on learning provides pupils with the opportunity to safely make mistakes and learn organically through trial and error and should therefore still be promoted. We propose an electronic model of an excitable cell composed of different modules representing different parts of a neuron - dendrites, soma, axon and node of Ranvier. We describe a series of experiments that allow students to better understand differences between passive and active cell responses and differences between myelinated and demyelinated axons. These circuits can also be used to demonstrate temporal and spatial summation of signals coming to the neuron via dendrites, as well as the neuron coding by firing frequency. Finally, they permit experimental determination along with theoretical calculations of important biophysical properties of excitable cells, such as rheobase, chronaxie and space constant. This open-source model has been successfully integrated into an undergraduate course of the physiology of excitable cells and student feedback assessment reveals that it helped students to understand important notions of the course. Thus, this neuromorphic circuit could be a valuable tool for biophysics and neuroscience courses in other universities.
严格的动物福利原则迫使本科教师避免使用动物。因此,许多使用实验动物的实践实验室课程正逐渐被计算机模拟所取代。这些多功能的软件模拟允许在各种各样的实验条件下观察生物系统的行为。虽然这种多功能性很重要,但即使学生做出错误假设,计算机模拟通常也能运行,这种情况带来了自身的教学问题。实践学习为学生提供了安全犯错并通过反复试验进行有机学习的机会,因此仍应予以推广。我们提出了一种可兴奋细胞的电子模型,它由代表神经元不同部分的不同模块组成——树突、胞体、轴突和郎飞结。我们描述了一系列实验,使学生能够更好地理解被动和主动细胞反应之间的差异以及有髓和无髓轴突之间的差异。这些电路还可用于演示通过树突传入神经元的信号的时间和空间总和,以及通过放电频率进行的神经元编码。最后,它们允许对可兴奋细胞的重要生物物理特性进行实验测定以及理论计算,如基强度、时值和空间常数。这个开源模型已成功整合到一门关于可兴奋细胞生理学的本科课程中,学生反馈评估表明它有助于学生理解该课程的重要概念。因此,这种神经形态电路可能是其他大学的生物物理学和神经科学课程的一个有价值的工具。