Gálvez-Galván Ana, Barea Lorena, Garrido-Ramos Manuel A, Prieto Pilar
Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004, Córdoba, Spain.
Area of Plant Breeding and Biotechnology, IFAPA Alameda del Obispo, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
Plant Mol Biol. 2024 Oct 2;114(5):108. doi: 10.1007/s11103-024-01501-5.
In this paper, we have performed an in-depth study of the complete set of the satellite DNA (satDNA) families (i.e. the satellitomes) in the genome of two barley species of agronomic value in a breeding framework, H. chilense (H1 and H7 accessions) and H. vulgare (H106 accession), which can be useful tools for studying chromosome associations during meiosis. The study has led to the analysis of a total of 18 satDNA families in H. vulgare, 25 satDNA families in H. chilense (accession H1) and 27 satDNA families in H. chilense (accession H7) that constitute 46 different satDNA families forming 36 homology groups. Our study highlights different important contributions of evolutionary and applied interests. Thus, both barley species show very divergent satDNA profiles, which could be partly explained by the differential effects of domestication versus wildlife. Divergence derives from the differential amplification of different common ancestral satellites and the emergence of new satellites in H. chilense, usually from pre-existing ones but also random sequences. There are also differences between the two H. chilense accessions, which support genetically distinct groups. The fluorescence in situ hybridization (FISH) patterns of some satDNAs yield distinctive genetic markers for the identification of specific H. chilense or H. vulgare chromosomes. Some of the satellites have peculiar structures or are related to transposable elements which provide information about their origin and expansion. Among these, we discuss the existence of different (peri)centromeric satellites that supply this region with some plasticity important for centromere evolution. These peri(centromeric) satDNAs and the set of subtelomeric satDNAs (a total of 38 different families) are analyzed in the framework of breeding as the high diversity found in the subtelomeric regions might support their putative implication in chromosome recognition and pairing during meiosis, a key point in the production of addition/substitution lines and hybrids.
在本文中,我们在育种框架下对两种具有农艺价值的大麦物种——智利大麦(H1和H7种质)和普通大麦(H106种质)基因组中的卫星DNA(satDNA)家族全集(即卫星基因组)进行了深入研究,这些家族可作为研究减数分裂过程中染色体关联的有用工具。该研究共分析了普通大麦中的18个satDNA家族、智利大麦(H1种质)中的25个satDNA家族以及智利大麦(H7种质)中的27个satDNA家族,它们构成了46个不同的satDNA家族,形成36个同源组。我们的研究突出了在进化和应用方面的不同重要贡献。因此,这两种大麦物种显示出非常不同的satDNA图谱,这部分可以通过驯化与野生状态的差异影响来解释。差异源于不同共同祖先卫星的差异扩增以及智利大麦中新卫星的出现,新卫星通常源于已有的卫星,但也有随机序列。两种智利大麦种质之间也存在差异,这支持了它们在遗传上是不同的群体。一些satDNA的荧光原位杂交(FISH)模式产生了用于鉴定特定智利大麦或普通大麦染色体的独特遗传标记。一些卫星具有特殊结构或与转座元件相关,这为它们的起源和扩展提供了信息。其中,我们讨论了不同的(近)着丝粒卫星的存在,这些卫星为该区域提供了对着丝粒进化很重要的一些可塑性。这些(近)着丝粒satDNA和一组端粒卫星DNA(总共38个不同家族)在育种框架下进行了分析,因为在端粒区域发现的高度多样性可能支持它们在减数分裂过程中对染色体识别和配对的假定作用,这是生产附加/代换系和杂种的关键环节。