Aguilar Miguel, Prieto Pilar
Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain.
Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain.
Front Plant Sci. 2021 Jun 4;12:672489. doi: 10.3389/fpls.2021.672489. eCollection 2021.
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
基因组结构有助于染色体识别、配对和重组。端粒和亚端粒在减数分裂开始时对特定染色体的识别和配对起着重要作用,而这些过程是后期同源染色体(同一基因组中的等效染色体)之间进行染色体重组的关键。在植物多倍体中,由于存在部分同源染色体(来自相关基因组的等效染色体),这些末端区域在同源染色体识别方面更为重要。尽管端粒相互作用似乎有助于同源配对,进而促进减数分裂的进程,但其他染色体区域,如亚端粒,也需要考虑,因为端粒的DNA序列并非染色体特异性的。此外,重组发生在亚端粒区域,而且正如在黑麦和小麦中所发生的那样,同源识别和配对更多地与重组区域相关,而非与重组较少的区域相关。在植物育种背景下,了解同源染色体在减数分裂开始时如何启动配对,有助于在杂种或种间遗传杂交中进行染色体操作。因此,可以通过促进种间染色体关联中的重组,将相关遗传供体物种中理想的农艺性状转移到作物中。在本综述中,我们总结了端粒和亚端粒在减数分裂早期阶段对染色质动态的重要性及其在植物育种框架中对重组的影响。