Atitallah Safa Ben, Driss Maha, Boulila Wadii, Koubaa Anis
IEEE J Biomed Health Inform. 2024 Oct 2;PP. doi: 10.1109/JBHI.2024.3473541.
Alzheimer's disease is a severe brain disorder that causes harm in various brain areas and leads to memory damage. The limited availability of labeled medical data poses a significant challenge for accurate Alzheimer's disease detection. There is a critical need for effective methods to improve the accuracy of Alzheimer's disease detection, considering the scarcity of labeled data, the complexity of the disease, and the constraints related to data privacy. To address this challenge, our study leverages the power of Big Data in the form of pre-trained Convolutional Neural Networks (CNNs) within the framework of Few-Shot Learning (FSL) and ensemble learning. We propose an ensemble approach based on a Prototypical Network (ProtoNet), a powerful method in FSL, integrating various pre-trained CNNs as encoders. This integration enhances the richness of features extracted from medical images. Our approach also includes a combination of class-aware loss and entropy loss to ensure a more precise classification of Alzheimer's disease progression levels. The effectiveness of our method was evaluated using two datasets, the Kaggle Alzheimer dataset, and the ADNI dataset, achieving an accuracy of 99.72% and 99.86%, respectively. The comparison of our results with relevant state-of-the-art studies demonstrated that our approach achieved superior accuracy and highlighted its validity and potential for real-world applications in early Alzheimer's disease detection.
阿尔茨海默病是一种严重的脑部疾病,会对大脑的各个区域造成损害并导致记忆损伤。标记医学数据的有限可用性给准确检测阿尔茨海默病带来了重大挑战。考虑到标记数据的稀缺性、疾病的复杂性以及与数据隐私相关的限制,迫切需要有效的方法来提高阿尔茨海默病检测的准确性。为应对这一挑战,我们的研究在少样本学习(FSL)和集成学习框架内,利用预训练卷积神经网络(CNN)形式的大数据的力量。我们提出了一种基于原型网络(ProtoNet)的集成方法,ProtoNet是FSL中的一种强大方法,将各种预训练的CNN作为编码器进行集成。这种集成增强了从医学图像中提取的特征的丰富性。我们的方法还包括类感知损失和熵损失的组合,以确保对阿尔茨海默病进展水平进行更精确的分类。我们使用两个数据集,即Kaggle阿尔茨海默病数据集和ADNI数据集,对我们方法的有效性进行了评估,分别达到了99.72%和99.86%的准确率。我们的结果与相关的最新研究进行比较表明,我们的方法实现了更高的准确率,并突出了其在早期阿尔茨海默病检测的实际应用中的有效性和潜力。