Suppr超能文献

使用移动健康技术进行围产期血压监测的自动图像转录

Automated image transcription for perinatal blood pressure monitoring using mobile health technology.

作者信息

Katebi Nasim, Bremer Whitney, Nguyen Tony, Phan Daniel, Jeff Jamila, Armstrong Kirkland, Phabian-Millbrook Paula, Platner Marissa, Carroll Kimberly, Shoai Banafsheh, Rohloff Peter, Boulet Sheree L, Franklin Cheryl G, Clifford Gari D

机构信息

Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America.

Center for Indigeous Health Research, Wuqu' Kawoq - Maya Health Alliance, Tecpán, Chimaltenango, Guatemala.

出版信息

PLOS Digit Health. 2024 Oct 2;3(10):e0000588. doi: 10.1371/journal.pdig.0000588. eCollection 2024 Oct.

Abstract

This paper introduces a novel approach to address the challenges associated with transferring blood pressure (BP) data obtained from oscillometric devices used in self-measured BP monitoring systems to integrate this data into medical health records or a proxy database accessible by clinicians, particularly in low literacy populations. To this end, we developed an automated image transcription technique to effectively transcribe readings from BP devices, ultimately enhancing the accessibility and usability of BP data for monitoring and managing BP during pregnancy and the postpartum period, particularly in low-resource settings and low-literate populations. In the designed study, the photos of the BP devices were captured as part of perinatal mobile health (mHealth) monitoring programs, conducted in four studies across two countries. The Guatemala Set 1 and Guatemala Set 2 datasets include the data captured by a cohort of 49 lay midwives from 1697 and 584 pregnant women carrying singletons in the second and third trimesters in rural Guatemala during routine screening. Additionally, we designed an mHealth system in Georgia for postpartum women to monitor and report their BP at home with 23 and 49 African American participants contributing to the Georgia I3 and Georgia IMPROVE projects, respectively. We developed a deep learning-based model which operates in two steps: LCD localization using the You Only Look Once (YOLO) object detection model and digit recognition using a convolutional neural network-based model capable of recognizing multiple digits. We applied color correction and thresholding techniques to minimize the impact of reflection and artifacts. Three experiments were conducted based on the devices used for training the digit recognition model. Overall, our results demonstrate that the device-specific model with transfer learning and the device independent model outperformed the device-specific model without transfer learning. The mean absolute error (MAE) of image transcription on held-out test datasets using the device-independent digit recognition were 1.2 and 0.8 mmHg for systolic and diastolic BP in the Georgia IMPROVE and 0.9 and 0.5 mmHg in Guatemala Set 2 datasets. The MAE, far below the FDA recommendation of 5 mmHg, makes the proposed automatic image transcription model suitable for general use when used with appropriate low-error BP devices.

摘要

本文介绍了一种新颖的方法,以应对将从自我测量血压监测系统中使用的示波装置获取的血压(BP)数据进行传输时所面临的挑战,从而将这些数据整合到医疗健康记录或临床医生可访问的代理数据库中,特别是在低文化水平人群中。为此,我们开发了一种自动图像转录技术,以有效地转录血压装置的读数,最终提高孕期和产后期间血压数据的可访问性和可用性,特别是在资源匮乏地区和低文化水平人群中。在所设计的研究中,血压装置的照片作为围产期移动健康(mHealth)监测项目的一部分被拍摄,该项目在两个国家的四项研究中进行。危地马拉数据集1和危地马拉数据集2包含了49名非专业助产士在危地马拉农村对1697名和584名单胎孕妇在孕中期和孕晚期进行常规筛查时所采集的数据。此外,我们在佐治亚州为产后妇女设计了一个mHealth系统,以便她们在家中监测和报告血压,分别有23名和49名非裔美国参与者参与了佐治亚州I3和佐治亚州改善项目。我们开发了一个基于深度学习的模型,该模型分两步运行:使用“你只看一次”(YOLO)目标检测模型进行液晶显示器(LCD)定位,并使用基于卷积神经网络的模型进行数字识别,该模型能够识别多个数字。我们应用了色彩校正和阈值处理技术,以尽量减少反射和伪影的影响。基于用于训练数字识别模型的设备进行了三项实验。总体而言,我们的结果表明,具有迁移学习的特定设备模型和独立于设备的模型优于没有迁移学习的特定设备模型。在佐治亚州改善项目中,使用独立于设备的数字识别对留出的测试数据集进行图像转录时,收缩压和舒张压的平均绝对误差(MAE)分别为1.2和0.8 mmHg,在危地马拉数据集2中为0.9和0.5 mmHg。该MAE远低于美国食品药品监督管理局(FDA)5 mmHg的建议值,使得所提出的自动图像转录模型在与适当的低误差血压设备一起使用时适合普遍应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f4a/11446426/0ffcbfe8e184/pdig.0000588.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验