Hevesy György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Pázmány Péter sétány. 1/A, Budapest H-1117, Hungary.
Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary.
J Chem Inf Model. 2024 Oct 14;64(19):7626-7638. doi: 10.1021/acs.jcim.4c01023. Epub 2024 Oct 2.
optimization of protein binding has received a great deal of attention in the recent years. Since prefiltering of strong binders is fast and cheap compared to library screening methods, the advent of powerful hardware and advanced machine learning algorithms has made this strategy more accessible and preferred. These advances have already impacted the global response to pandemic threats. In this study, we proposed and tested a workflow for designing nanobodies targeting the SARS-CoV-2 spike protein receptor binding domain (S-RBD) using machine learning techniques complemented by molecular dynamics simulations. We evaluated the feasibility of this workflow using a test set of 3 different nanobodies and 2 different S-RBD variants, from design and bacterial expression to binding assays of the designed nanobody mutants. We successfully designed nanobodies that were subsequently tested against both the wild-type (Wuhan type) and the delta variant S-RBD and found 2 of them to be stronger binders compared to the wild-type nanobody. We use this case study to describe both the strengths and weaknesses of this assisted nanobody design strategy.
近年来,人们对蛋白质结合的优化给予了极大的关注。由于与文库筛选方法相比,预过滤强结合物既快速又廉价,强大的硬件和先进的机器学习算法的出现使得这种策略更易于实现和更受欢迎。这些进展已经对全球应对大流行病威胁产生了影响。在本研究中,我们提出并测试了一种使用机器学习技术和分子动力学模拟设计针对 SARS-CoV-2 刺突蛋白受体结合域(S-RBD)的纳米抗体的工作流程。我们使用 3 种不同的纳米抗体和 2 种不同的 S-RBD 变体的测试集来评估此工作流程的可行性,从设计和细菌表达到设计的纳米抗体突变体的结合测定。我们成功地设计了纳米抗体,随后对野生型(武汉型)和 delta 变体 S-RBD 进行了测试,发现其中 2 种与野生型纳米抗体相比具有更强的结合能力。我们使用此案例研究来描述这种辅助纳米抗体设计策略的优缺点。