Suppr超能文献

用于生成两个不同的、相互连接的三维微血管网络的无屏障、开放式微流控芯片。

Barrier-free, open-top microfluidic chip for generating two distinct, interconnected 3D microvascular networks.

作者信息

Yrjänäinen Alma, Mesiä Elina, Lampela Ella, Kreutzer Joose, Vihinen Jorma, Tornberg Kaisa, Vuorenpää Hanna, Miettinen Susanna, Kallio Pasi, Mäki Antti-Juhana

机构信息

Adult Stem Cell Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland.

Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Pirkanmaa, Finland.

出版信息

Sci Rep. 2024 Oct 2;14(1):22916. doi: 10.1038/s41598-024-74493-3.

Abstract

Developing microphysiological cell culture platforms with a three-dimensional (3D) microenvironment has been a significant advancement from traditional monolayer cultures. Still, most of the current microphysiological platforms are limited in closed designs, i.e. are not accessible after 3D cell culture loading. Here, we report an open-top microfluidic chip which enables the generation of two sequentially loaded 3D cell cultures without physical barriers restricting the nurture, gas exchange and cellular communication. As a proof-of-concept, we demonstrated the formation of two 3D vasculatures, one in the upper and the other in the lower compartment, under three distinct flow conditions: asymmetric side-to-center, symmetric side-to-center and symmetric center-to-side. We used computational modelling to characterize initial flow pressures in cell culture compartments. We showed prominent vessel formation and branched vasculatures in upper and lower cell culture compartments with interconnecting, lumenized vessels with in vivo-relevant diameter in all flow conditions. With advanced image processing, we quantified and compared the overall vascular network volume and the total length formed in asymmetric side-to-center, symmetric side-to-center and symmetric center-to-side flow conditions. Our results indicate that the developed chip can house two distinct 3D cell cultures with merging vessels between compartments and by providing asymmetric side-to-center or symmetric center-to-side flow vascular morphogenesis is enhanced in terms of overall network length. The developed open-top microfluidic chip may find various applications in generation of tissue-specific 3D-3D co-cultures for studying cellular interactions in vascularized tissues and organs.

摘要

开发具有三维(3D)微环境的微生理细胞培养平台是相对于传统单层培养的一项重大进步。然而,目前大多数微生理平台的设计较为封闭,即在3D细胞培养加载后无法进行后续操作。在此,我们报告一种顶部开放的微流控芯片,它能够生成两个顺序加载的3D细胞培养物,且不存在限制营养供应、气体交换和细胞通讯的物理屏障。作为概念验证,我们展示了在三种不同流动条件下,即不对称侧到中心、对称侧到中心和对称中心到侧,在上层和下层隔室中分别形成两个3D脉管系统。我们使用计算模型来表征细胞培养隔室中的初始流动压力。我们发现在所有流动条件下,上层和下层细胞培养隔室中均有显著的血管形成和分支脉管系统,其相互连接的、具有体内相关直径的管腔化血管。通过先进的图像处理,我们量化并比较了在不对称侧到中心、对称侧到中心和对称中心到侧流动条件下形成的整体血管网络体积和总长度。我们的结果表明,所开发的芯片能够容纳两个不同的3D细胞培养物,隔室之间的血管相互融合,并且通过提供不对称侧到中心或对称中心到侧的流动,血管形态发生在整体网络长度方面得到增强。所开发的顶部开放微流控芯片可能在生成组织特异性3D - 3D共培养物以研究血管化组织和器官中的细胞相互作用方面有多种应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de67/11447027/d244e78e79a6/41598_2024_74493_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验