Cong Xiaoyu, Mazierski Paweł, Miodyńska Magdalena, Zaleska-Medynska Adriana, Horn Harald, Schwartz Thomas, Gmurek Marta
Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland.
Sci Rep. 2024 Oct 2;14(1):22897. doi: 10.1038/s41598-024-74147-4.
Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk. The study investigates the efficacy of visible light-driven photocatalytic systems utilizing two catalyst types (TiO-Pd/Cu and g-CN-Pd/Cu), with a particular emphasis on their effectiveness in eliminating bla, ermB, qnrS, tetM. intl1, 16 S rDNA and 23 S rDNA through photocatalytic ozonation and peroxone processes. Incorporating O into photocatalytic processes significantly enhances target removal efficiency, with the photocatalyst-assisted peroxone process emerging as the most effective AOP. The reemergence of targeted contaminants following treatment highlights the pivotal importance of AOPs and the meticulous selection of catalysts in ensuring sustained treatment efficacy. Furthermore, Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis reveals challenges in eradicating GC-rich bacteria with TiO and g-CN processes, while slight differences in Cu/Pd loadings suggest g-CN-based ozonation improved antibacterial effectiveness. Terminal Restriction Fragment Length Polymorphism analysis highlights the efficacy of the photocatalyst-assisted peroxone process in treating diverse samples.
抗生素在人类医学、水产养殖和畜牧业中被广泛使用,导致抗菌抗性释放到环境中。这促使抗生素抗性基因(ARGs)迅速传播,对人类健康和水生生态系统构成重大威胁。传统的废水处理方法往往无法消除ARGs,因此需要采用高级氧化工艺(AOPs)来应对这一日益增长的风险。该研究调查了利用两种催化剂类型(TiO-Pd/Cu和g-CN-Pd/Cu)的可见光驱动光催化系统的功效,特别强调了它们在通过光催化臭氧化和过氧单硫酸盐工艺消除bla、ermB、qnrS、tetM、intl1、16 S rDNA和23 S rDNA方面的有效性。将臭氧纳入光催化过程可显著提高目标去除效率,其中光催化剂辅助过氧单硫酸盐工艺是最有效的AOP。处理后目标污染物的再次出现凸显了AOPs以及精心选择催化剂对于确保持续处理效果的关键重要性。此外,聚合酶链反应-变性梯度凝胶电泳(PCR-DGGE)分析揭示了使用TiO和g-CN工艺根除富含GC的细菌存在挑战,而Cu/Pd负载量的细微差异表明基于g-CN的臭氧化提高了抗菌效果。末端限制性片段长度多态性分析突出了光催化剂辅助过氧单硫酸盐工艺在处理不同样品方面的功效。