Vanhoucke Thibault, Perima Angga, Zolfanelli Lorenzo, Bruhns Pierre, Broketa Matteo
Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1222, Antibodies in Therapy and Pathology, Paris, France.
Sorbonne Université, Collège Doctoral, Paris, France.
Front Bioeng Biotechnol. 2024 Sep 18;12:1468738. doi: 10.3389/fbioe.2024.1468738. eCollection 2024.
Droplet-based microfluidics techniques coupled to microscopy allow for the characterization of cells at the single-cell scale. However, such techniques generate substantial amounts of data and microscopy images that must be analyzed. Droplets on these images usually need to be classified depending on the number of cells they contain. This verification, when visually carried out by the experimenter image-per-image, is time-consuming and impractical for analysis of many assays or when an assay yields many putative droplets of interest. Machine learning models have already been developed to classify cell-containing droplets within microscopy images, but not in the context of assays in which non-cellular structures are present inside the droplet in addition to cells. Here we develop a deep learning model using the neural network ResNet-50 that can be applied to functional droplet-based microfluidic assays to classify droplets according to the number of cells they contain with >90% accuracy in a very short time. This model performs high accuracy classification of droplets containing both cells with non-cellular structures and cells alone and can accommodate several different cell types, for generalization to a broader array of droplet-based microfluidics applications.
基于液滴的微流控技术与显微镜相结合,能够在单细胞水平上对细胞进行表征。然而,此类技术会产生大量必须加以分析的数据和显微镜图像。这些图像上的液滴通常需要根据其所包含的细胞数量进行分类。当实验人员逐张图像进行视觉验证时,这种验证对于许多检测分析而言耗时且不切实际,或者当一项检测产生许多潜在的感兴趣液滴时也是如此。机器学习模型已被开发用于对显微镜图像中的含细胞液滴进行分类,但并非针对液滴内除细胞外还存在非细胞结构的检测分析情况。在此,我们使用神经网络ResNet - 50开发了一种深度学习模型,该模型可应用于基于功能液滴的微流控检测分析,能在极短时间内以超过90%的准确率根据液滴所含细胞数量对液滴进行分类。此模型对含有细胞与非细胞结构的液滴以及仅含细胞的液滴均能进行高精度分类,并且能够容纳几种不同的细胞类型,从而推广到更广泛的基于液滴的微流控应用领域。