Suppr超能文献

基于深度神经网络的微通道中二元聚并液滴混合特性研究

Mixing characterization of binary-coalesced droplets in microchannels using deep neural network.

作者信息

Arjun A, Ajith R R, Kumar Ranjith S

机构信息

Micro/nanofluidics Research Laboratory, Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananathapuram 695016, Kerala, India.

出版信息

Biomicrofluidics. 2020 Jun 4;14(3):034111. doi: 10.1063/5.0008461. eCollection 2020 May.

Abstract

Real-time object identification and classification are essential in many microfluidic applications especially in the droplet microfluidics. This paper discusses the application of convolutional neural networks to detect the merged microdroplet in the flow field and classify them in an on-the-go manner based on the extent of mixing. The droplets are generated in PMMA microfluidic devices employing flow-focusing and cross-flow configurations. The visualization of binary coalescence of droplets is performed by a CCD camera attached to a microscope, and the sequence of images is recorded. Different real-time object localization and classification networks such as You Only Look Once and Singleshot Multibox Detector are deployed for droplet detection and characterization. A custom dataset to train these deep neural networks to detect and classify is created from the captured images and labeled manually. The merged droplets are segregated based on the degree of mixing into three categories: low mixing, intermediate mixing, and high mixing. The trained model is tested against images taken at different ambient conditions, droplet shapes, droplet sizes, and binary-fluid combinations, which indeed exhibited high accuracy and precision in predictions. In addition, it is demonstrated that these schemes are efficient in localization of coalesced binary droplets from the recorded video or image and classify them based on grade of mixing irrespective of experimental conditions in real time.

摘要

实时目标识别与分类在许多微流控应用中至关重要,尤其是在液滴微流控领域。本文讨论了卷积神经网络在检测流场中合并微滴并基于混合程度实时进行分类方面的应用。液滴在采用流动聚焦和错流配置的聚甲基丙烯酸甲酯(PMMA)微流控装置中产生。通过连接到显微镜的电荷耦合器件(CCD)相机对液滴的二元聚并进行可视化,并记录图像序列。部署了不同的实时目标定位和分类网络,如“你只看一次”(You Only Look Once)和单发多框检测器(Singleshot Multibox Detector)用于液滴检测和特征描述。从捕获的图像中创建一个自定义数据集并手动标注,以训练这些深度神经网络进行检测和分类。根据混合程度将合并后的液滴分为三类:低混合、中等混合和高混合。针对在不同环境条件、液滴形状、液滴尺寸和二元流体组合下拍摄的图像对训练好的模型进行测试,其在预测中确实表现出了高精度和高精准度。此外,结果表明这些方案能够有效地从记录的视频或图像中定位聚并的二元液滴,并根据混合程度实时对其进行分类,而不受实验条件的影响。

相似文献

1
Mixing characterization of binary-coalesced droplets in microchannels using deep neural network.
Biomicrofluidics. 2020 Jun 4;14(3):034111. doi: 10.1063/5.0008461. eCollection 2020 May.
3
Deep learning based real-time tourist spots detection and recognition mechanism.
Sci Prog. 2021 Sep;104(3_suppl):368504211044228. doi: 10.1177/00368504211044228.
4
Deep learning enabled label-free microfluidic droplet classification for single cell functional assays.
Front Bioeng Biotechnol. 2024 Sep 18;12:1468738. doi: 10.3389/fbioe.2024.1468738. eCollection 2024.
5
Enhanced mixing of binary droplets induced by capillary pressure.
J Colloid Interface Sci. 2019 Jun 1;545:35-42. doi: 10.1016/j.jcis.2019.03.016. Epub 2019 Mar 7.
6
Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications.
Eur Phys J E Soft Matter. 2023 May 8;46(5):32. doi: 10.1140/epje/s10189-023-00290-x.
7
Enhancing Microdroplet Image Analysis with Deep Learning.
Micromachines (Basel). 2023 Oct 22;14(10):1964. doi: 10.3390/mi14101964.
9
Fluid mixing in droplet-based microfluidics with T junction and convergent-divergent sinusoidal microchannels.
Electrophoresis. 2018 Feb;39(3):512-520. doi: 10.1002/elps.201700374. Epub 2018 Jan 9.
10
Rapid Microfluidic Mixing Method Based on Droplet Rotation Due to PDMS Deformation.
Micromachines (Basel). 2021 Jul 29;12(8):901. doi: 10.3390/mi12080901.

引用本文的文献

1
4
Computer vision meets microfluidics: a label-free method for high-throughput cell analysis.
Microsyst Nanoeng. 2023 Sep 21;9:116. doi: 10.1038/s41378-023-00562-8. eCollection 2023.
5
Microsystem Advances through Integration with Artificial Intelligence.
Micromachines (Basel). 2023 Apr 8;14(4):826. doi: 10.3390/mi14040826.
6
Deep learning with microfluidics for on-chip droplet generation, control, and analysis.
Front Bioeng Biotechnol. 2023 Jun 7;11:1208648. doi: 10.3389/fbioe.2023.1208648. eCollection 2023.

本文引用的文献

1
"Development and application of analytical detection techniques for droplet-based microfluidics"-A review.
Anal Chim Acta. 2020 May 29;1113:66-84. doi: 10.1016/j.aca.2020.03.011. Epub 2020 Mar 9.
2
From single-molecule detection to next-generation sequencing: microfluidic droplets for high-throughput nucleic acid analysis.
Microfluid Nanofluidics. 2017;21(3):58. doi: 10.1007/s10404-017-1889-4. Epub 2017 Mar 10.
4
Droplet-based optofluidic systems for measuring enzyme kinetics.
Anal Bioanal Chem. 2020 May;412(14):3265-3283. doi: 10.1007/s00216-019-02294-z. Epub 2019 Dec 18.
5
Microfluidic Systems for Droplet Generation in Aqueous Continuous Phases: A Focus Review.
Langmuir. 2019 Oct 1;35(39):12597-12612. doi: 10.1021/acs.langmuir.9b02179. Epub 2019 Sep 16.
6
Micromixers and their applications in kinetic analysis of biochemical reactions.
Talanta. 2019 Dec 1;205:120136. doi: 10.1016/j.talanta.2019.120136. Epub 2019 Jul 9.
7
Droplet microfluidics: from proof-of-concept to real-world utility?
Chem Commun (Camb). 2019 Aug 28;55(67):9895-9903. doi: 10.1039/c9cc04750f. Epub 2019 Jul 23.
8
Droplet barcoding: tracking mobile micro-reactors for high-throughput biology.
Curr Opin Biotechnol. 2019 Dec;60:205-212. doi: 10.1016/j.copbio.2019.05.004. Epub 2019 Jun 12.
9
Learning from droplet flows in microfluidic channels using deep neural networks.
Sci Rep. 2019 May 31;9(1):8114. doi: 10.1038/s41598-019-44556-x.
10
Automated detection and sorting of microencapsulation via machine learning.
Lab Chip. 2019 May 14;19(10):1808-1817. doi: 10.1039/c8lc01394b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验