Suppr超能文献

FlightTrackAI:一种基于卷积神经网络的强大工具,用于追踪蚊子的飞行行为。

FlightTrackAI: a robust convolutional neural network-based tool for tracking the flight behaviour of mosquitoes.

作者信息

Javed Nouman, López-Denman Adam J, Paradkar Prasad N, Bhatti Asim

机构信息

Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria 3216, Australia.

CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220, Australia.

出版信息

R Soc Open Sci. 2024 Oct 2;11(10):240923. doi: 10.1098/rsos.240923. eCollection 2024 Oct.

Abstract

Monitoring the flight behaviour of mosquitoes is crucial for assessing their fitness levels and understanding their potential role in disease transmission. Existing methods for tracking mosquito flight behaviour are challenging to implement in laboratory environments, and they also struggle with identity tracking, particularly during occlusions. Here, we introduce FlightTrackAI, a robust convolutional neural network (CNN)-based tool for automatic mosquito flight tracking. FlightTrackAI employs CNN, a multi-object tracking algorithm, and interpolation to track flight behaviour. It automatically processes each video in the input folder without supervision and generates tracked videos with mosquito positions across the frames and trajectory graphs before and after interpolation. FlightTrackAI does not require a sophisticated setup to capture videos; it can perform excellently with videos recorded using standard laboratory cages. FlightTrackAI also offers filtering capabilities to eliminate short-lived objects such as reflections. Validation of FlightTrackAI demonstrated its excellent performance with an average accuracy of 99.9%. The percentage of correctly assigned identities after occlusions exceeded 91%. The data produced by FlightTrackAI can facilitate analysis of various flight-related behaviours, including flight distance and volume coverage during flights. This advancement can help to enhance our understanding of mosquito ecology and behaviour, thereby informing targeted strategies for vector control.

摘要

监测蚊子的飞行行为对于评估它们的健康水平以及了解它们在疾病传播中的潜在作用至关重要。现有的追踪蚊子飞行行为的方法在实验室环境中实施具有挑战性,而且在身份追踪方面也存在困难,尤其是在遮挡期间。在此,我们介绍FlightTrackAI,这是一种基于强大卷积神经网络(CNN)的自动蚊子飞行追踪工具。FlightTrackAI采用CNN、多目标追踪算法和插值法来追踪飞行行为。它无需监督即可自动处理输入文件夹中的每个视频,并生成带有各帧中蚊子位置以及插值前后轨迹图的追踪视频。FlightTrackAI不需要复杂的视频捕捉设置;使用标准实验室笼子录制的视频它也能表现出色。FlightTrackAI还具备过滤功能,可消除诸如反射等短暂出现的物体。FlightTrackAI的验证表明其性能卓越,平均准确率达99.9%。遮挡后正确识别身份的百分比超过91%。FlightTrackAI生成的数据有助于分析各种与飞行相关的行为,包括飞行距离和飞行过程中的覆盖范围。这一进展有助于增强我们对蚊子生态和行为的理解,从而为病媒控制的针对性策略提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fd9/11444788/97a2cb346cd1/rsos.240923.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验