Suppr超能文献

孕龄小于34周早产儿宫外生长受限风险预测模型的构建与验证

Construction and validation of a risk prediction model for extrauterine growth restriction in preterm infants born at gestational age less than 34 weeks.

作者信息

Xie Yu, Zhang Zhihui, Luo Mengmeng, Mo Yan, Wei Qiufen, Wang Laishuan, Zhang Rong, Zhong Hanlu, Li Yan

机构信息

Ruikang Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China.

JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.

出版信息

Front Pediatr. 2024 Sep 18;12:1381193. doi: 10.3389/fped.2024.1381193. eCollection 2024.

Abstract

OBJECTIVE

This study aimed to develop and validate a model for predicting extrauterine growth restriction (EUGR) in preterm infants born ≤34 weeks gestation.

METHODS

Preterm infants from Guangxi Maternal and Child Health Hospital (2019-2021) were randomly divided into training (80%) and testing (20%) sets. Collinear clinical variables were excluded using Pearson correlation coefficients. Predictive factors were identified using Lasso regression. Random forest (RF), support vector machine (SVM), and logistic regression (LR) models were then built and evaluated using the confusion matrix, area under the curve (AUC), and the F1 score. Additionally, calibration curves and decision curve analysis (DCA) were plotted to assess the performance and practical utility of the models.

RESULTS

The study included 387 infants, with no significant baseline differences between training (= 310) and testing (= 77) sets. LR identified gestational age, birth weight, premature rupture of membranes, patent ductus arteriosus, cholestasis, and neonatal sepsis as key EUGR predictors. The RF model (19 variables) demonstrated an accuracy of greater than 90% during training, and superior AUC (0.62), F1 score (0.80), and accuracy (0.72) in testing compared to other models.

CONCLUSIONS

Gestational age, birth weight, premature rupture of membranes, patent ductus arteriosus, cholestasis, and neonatal sepsis are significant EUGR predictors in preterm infants ≤34 weeks. The model shows promise for early EUGR prediction in clinical practice, potentially enhancing screening efficiency and accuracy, thus saving medical resources.

摘要

目的

本研究旨在开发并验证一种用于预测孕周≤34周的早产儿宫外生长受限(EUGR)的模型。

方法

将广西壮族自治区妇幼保健院(2019 - 2021年)的早产儿随机分为训练集(80%)和测试集(20%)。使用Pearson相关系数排除共线临床变量。采用Lasso回归确定预测因素。然后构建随机森林(RF)、支持向量机(SVM)和逻辑回归(LR)模型,并使用混淆矩阵、曲线下面积(AUC)和F1评分进行评估。此外,绘制校准曲线和决策曲线分析(DCA)以评估模型的性能和实际效用。

结果

该研究纳入了387例婴儿,训练集(n = 310)和测试集(n = 77)之间的基线无显著差异。LR确定孕周、出生体重、胎膜早破、动脉导管未闭、胆汁淤积和新生儿败血症为EUGR的关键预测因素。RF模型(19个变量)在训练期间的准确率大于90%,与其他模型相比,在测试中的AUC(0.62)、F1评分(0.80)和准确率(0.72)更高。

结论

孕周、出生体重、胎膜早破、动脉导管未闭、胆汁淤积和新生儿败血症是孕周≤34周早产儿EUGR的重要预测因素。该模型在临床实践中对早期EUGR预测显示出前景,可能提高筛查效率和准确性,从而节省医疗资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7777/11445175/a84f79709532/fped-12-1381193-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验