Suppr超能文献

COVID-19预后模型:机器学习与传统统计学的利弊辩论

COVID-19 Prognostic Models: A Pro-con Debate for Machine Learning vs. Traditional Statistics.

作者信息

Al-Hindawi Ahmed, Abdulaal Ahmed, Rawson Timothy M, Alqahtani Saleh A, Mughal Nabeela, Moore Luke S P

机构信息

Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.

Faculty of Medicine, Imperial College London, London, United Kingdom.

出版信息

Front Digit Health. 2021 Dec 23;3:637944. doi: 10.3389/fdgth.2021.637944. eCollection 2021.

Abstract

The SARS-CoV-2 virus, which causes the COVID-19 pandemic, has had an unprecedented impact on healthcare requiring multidisciplinary innovation and novel thinking to minimize impact and improve outcomes. Wide-ranging disciplines have collaborated including diverse clinicians (radiology, microbiology, and critical care), who are working increasingly closely with data-science. This has been leveraged through the democratization of data-science with the increasing availability of easy to access open datasets, tutorials, programming languages, and hardware which makes it significantly easier to create mathematical models. To address the COVID-19 pandemic, such data-science has enabled modeling of the impact of the virus on the population and individuals for diagnostic, prognostic, and epidemiological ends. This has led to two large systematic reviews on this topic that have highlighted the two different ways in which this feat has been attempted: one using classical statistics and the other using more novel machine learning techniques. In this review, we debate the relative strengths and weaknesses of each method toward the specific task of predicting COVID-19 outcomes.

摘要

导致新冠疫情的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒,对医疗保健产生了前所未有的影响,这需要多学科创新和新颖思维,以尽量减少影响并改善结果。包括不同临床医生(放射学、微生物学和重症监护)在内的广泛学科进行了合作,他们与数据科学的合作日益紧密。随着易于访问的开放数据集、教程、编程语言和硬件的可用性不断提高,数据科学得以普及,这使得创建数学模型变得更加容易,从而发挥了作用。为应对新冠疫情,此类数据科学已能够针对诊断、预后和流行病学目的,对病毒对人群和个体的影响进行建模。这导致了关于该主题的两项大型系统评价,突出了尝试实现这一壮举的两种不同方式:一种使用经典统计学,另一种使用更新颖的机器学习技术。在本综述中,我们针对预测新冠疫情结果的特定任务,讨论了每种方法的相对优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f64/8734592/99cc6a1e6ccb/fdgth-03-637944-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验