Suppr超能文献

一种用于培训初级眼科医生诊断临床前期圆锥角膜的机器学习模型的开发。

The development of a machine learning model to train junior ophthalmologists in diagnosing the pre-clinical keratoconus.

作者信息

Jiang Yang, Jiang Hanyu, Zhang Jing, Chen Tao, Li Ying, Zhou Yuehua, Chen Youxin, Li Fusheng

机构信息

Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.

Key Laboratory of Ocular Fundus Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.

出版信息

Front Med (Lausanne). 2024 Sep 18;11:1458356. doi: 10.3389/fmed.2024.1458356. eCollection 2024.

Abstract

PURPOSE

This study aims to evaluate the diagnostic performance of a machine learning model (ML model) to train junior ophthalmologists in detecting preclinical keratoconus (PKC).

METHODS

A total of 1,334 corneal topography images (The Pentacam HR system) from 413 keratoconus eyes, 32 PKC eyes and 222 normal eyes were collected. Five junior ophthalmologists were trained and annotated the images with or without the suggestions proposed by the ML model. The diagnostic performance of PKC was evaluated among three groups: junior ophthalmologist group (control group), ML model group and ML model-training junior ophthalmologist group (test group).

RESULTS

The accuracy of the ML model between the eyes of patients with KC and NEs in all three clinics (99% accuracy, area under the receiver operating characteristic (ROC) curve AUC of 1.00, 99% sensitivity, 99% specificity) was higher than that for Belin-Ambrósio enhanced ectasia display total deviation (BAD-D) (86% accuracy, AUC of 0.97, 97% sensitivity, 69% specificity). The accuracy of the ML model between eyes with PKC and NEs in all three clinics (98% accuracy, AUC of 0.96, 98% sensitivity, 98% specificity) was higher than that of BAD-D (69% accuracy, AUC of 0.73, 67% sensitivity, 69% specificity). The diagnostic accuracy of PKC was 47.5% (95%CI, 0.5-71.6%), 100% (95%CI, 100-100%) and 94.4% (95%CI, 14.7-94.7%) in the control group, ML model group and test group. With the assistance of the proposed ML model, the diagnostic accuracy of junior ophthalmologists improved with statistical significance ( < 0.05). According to the questionnaire of all the junior ophthalmologists, the average score was 4 (total 5) regarding to the comprehensiveness that the AI model has been in their keratoconus diagnosis learning; the average score was 4.4 (total 5) regarding to the convenience that the AI model has been in their keratoconus diagnosis learning.

CONCLUSION

The proposed ML model provided a novel approach for the detection of PKC with high diagnostic accuracy and assisted to improve the performance of junior ophthalmologists, resulting especially in reducing the risk of missed diagnoses.

摘要

目的

本研究旨在评估一种机器学习模型(ML模型)在培训初级眼科医生检测临床前期圆锥角膜(PKC)方面的诊断性能。

方法

共收集了来自413只圆锥角膜眼、32只PKC眼和222只正常眼的1334张角膜地形图图像(Pentacam HR系统)。对五名初级眼科医生进行培训,并让他们根据ML模型提出或未提出的建议对图像进行标注。在三组中评估PKC的诊断性能:初级眼科医生组(对照组)、ML模型组和ML模型培训初级眼科医生组(测试组)。

结果

在所有三家诊所中,ML模型在圆锥角膜患者眼和正常眼之间的准确率(99%准确率,受试者操作特征曲线下面积(ROC)AUC为1.00,99%敏感性,99%特异性)高于贝林 - 安布罗西奥增强型扩张显示总偏差(BAD - D)(86%准确率,AUC为0.97,97%敏感性,69%特异性)。在所有三家诊所中,ML模型在PKC眼和正常眼之间的准确率(98%准确率,AUC为0.96,98%敏感性,98%特异性)高于BAD - D(69%准确率,AUC为0.73,67%敏感性,69%特异性)。对照组、ML模型组和测试组中PKC的诊断准确率分别为47.5%(95%CI,0.5 - 71.6%)、100%(95%CI,100 - 100%)和94.4%(95%CI,14.7 - 94.7%)。在提出的ML模型的帮助下,初级眼科医生的诊断准确率有统计学意义的提高(<0.05)。根据所有初级眼科医生的问卷,关于AI模型在他们圆锥角膜诊断学习中的全面性,平均得分为4(满分5分);关于AI模型在他们圆锥角膜诊断学习中的便利性,平均得分为4.4(满分5分)。

结论

所提出的ML模型为PKC的检测提供了一种新方法,具有高诊断准确率,并有助于提高初级眼科医生的表现,尤其降低漏诊风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55a3/11445185/215ef173a3ba/fmed-11-1458356-g001.jpg

相似文献

1
The development of a machine learning model to train junior ophthalmologists in diagnosing the pre-clinical keratoconus.
Front Med (Lausanne). 2024 Sep 18;11:1458356. doi: 10.3389/fmed.2024.1458356. eCollection 2024.
2
Artificial intelligence for detecting keratoconus.
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.
3
Analysis of the diagnostic accuracy of Belin/Ambrósio Enhanced Ectasia and Corvis ST parameters for subclinical keratoconus.
Int Ophthalmol. 2023 May;43(5):1465-1475. doi: 10.1007/s10792-022-02543-8. Epub 2022 Oct 18.
6
Comparison of the morphological and biomechanical characteristics of keratoconus, forme fruste keratoconus, and normal corneas.
Semin Ophthalmol. 2021 Nov 17;36(8):671-678. doi: 10.1080/08820538.2021.1896752. Epub 2021 Mar 18.
9
Combining Spectral-Domain OCT and Air-Puff Tonometry Analysis to Diagnose Keratoconus.
J Refract Surg. 2022 Jun;38(6):374-380. doi: 10.3928/1081597X-20220414-02. Epub 2022 Jun 1.
10
Enhanced Tomographic Assessment to Detect Corneal Ectasia Based on Artificial Intelligence.
Am J Ophthalmol. 2018 Nov;195:223-232. doi: 10.1016/j.ajo.2018.08.005. Epub 2018 Aug 9.

引用本文的文献

本文引用的文献

1
Assessment of Preoperative Risk Factors for Post-LASIK Ectasia Development.
Clin Ophthalmol. 2023 Dec 4;17:3705-3715. doi: 10.2147/OPTH.S425479. eCollection 2023.
2
Evaluation of artificial intelligence models for the detection of asymmetric keratoconus eyes using Scheimpflug tomography.
Clin Exp Ophthalmol. 2022 Sep;50(7):714-723. doi: 10.1111/ceo.14126. Epub 2022 Jul 2.
3
Evaluation of Corneal Biomechanical Indices in Distinguishing Between Normal, Very Asymmetric, and Bilateral Keratoconic Eyes.
J Refract Surg. 2022 Jun;38(6):364-372. doi: 10.3928/1081597X-20220601-01. Epub 2022 Jun 1.
5
KeratoScreen: Early Keratoconus Classification With Zernike Polynomial Using Deep Learning.
Cornea. 2022 Sep 1;41(9):1158-1165. doi: 10.1097/ICO.0000000000003038. Epub 2022 Apr 20.
6
Keratoconus Screening Based on Deep Learning Approach of Corneal Topography.
Transl Vis Sci Technol. 2020 Sep 25;9(2):53. doi: 10.1167/tvst.9.2.53. eCollection 2020 Sep.
7
Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities.
Eye Vis (Lond). 2020 Sep 10;7:48. doi: 10.1186/s40662-020-00213-3. eCollection 2020.
8
Prevalence of Keratoconus Based on Scheimpflug Imaging: The Raine Study.
Ophthalmology. 2021 Apr;128(4):515-521. doi: 10.1016/j.ophtha.2020.08.020. Epub 2020 Aug 26.
9
10
An Early Finding of Keratoconus: Increase in Corneal Densitometry.
Cornea. 2018 May;37(5):580-586. doi: 10.1097/ICO.0000000000001537.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验