Suppr超能文献

基于角膜地形深度学习方法的圆锥角膜筛查。

Keratoconus Screening Based on Deep Learning Approach of Corneal Topography.

机构信息

Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.

Department of Ophthalmology, Taipei City Hospital, Renai branch, Taipei, Taiwan.

出版信息

Transl Vis Sci Technol. 2020 Sep 25;9(2):53. doi: 10.1167/tvst.9.2.53. eCollection 2020 Sep.

Abstract

PURPOSE

To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods.

METHODS

We retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigmatism. All images were divided into training and test datasets. We adopted three convolutional neural network (CNN) models for learning. The test dataset was applied to analyze the performance of the three models. In addition, for better discrimination and understanding, we displayed the pixel-wise discriminative features and class-discriminative heat map of diopter images for visualization.

RESULTS

Overall, 170 keratoconus, 28 subclinical keratoconus and 156 normal topographic pictures were collected. The convergence of accuracy and loss for the training and test datasets after training revealed no overfitting in all three CNN models. The sensitivity and specificity of all CNN models were over 0.90, and the area under the receiver operating characteristic curve reached 0.995 in the ResNet152 model. The pixel-wise discriminative features and the heat map of the prediction layer in the VGG16 model both revealed it focused on the largest gradient difference of topographic maps, which was corresponding to the diagnostic clues of ophthalmologists. The subclinical keratoconus was positively predicted with our model and also correlated with topographic indexes.

CONCLUSIONS

The DL models had fair accuracy for keratoconus screening based on corneal topographic images. The visualization mentioned in the current study revealed that the model focused on the appropriate region for diagnosis and rendered clinical explainability of deep learning more acceptable.

TRANSLATIONAL RELEVANCE

These high accuracy CNN models can aid ophthalmologists in keratoconus screening with color-coded corneal topography maps.

摘要

目的

基于角膜地形学开发并比较深度学习(DL)算法以检测圆锥角膜,并通过可视化方法进行验证。

方法

我们回顾性地收集了临床表现为圆锥角膜的研究组和规则散光的对照组的角膜地形图。所有图像均分为训练集和测试集。我们采用了三种卷积神经网络(CNN)模型进行学习。应用测试数据集来分析三种模型的性能。此外,为了更好地进行区分和理解,我们显示了屈光度图像的逐像素判别特征和类别判别热图以进行可视化。

结果

总共收集了 170 例圆锥角膜、28 例亚临床圆锥角膜和 156 例正常地形图像。训练后,训练和测试数据集的准确性和损失的收敛表明,所有三种 CNN 模型均无过拟合。所有 CNN 模型的敏感性和特异性均超过 0.90,ResNet152 模型的受试者工作特征曲线下面积达到 0.995。VGG16 模型的逐像素判别特征和预测层的热图均表明,它专注于地形图的最大梯度差异,这与眼科医生的诊断线索相对应。我们的模型对亚临床圆锥角膜的预测呈阳性,并且与地形指标相关。

结论

基于角膜地形图像,DL 模型对圆锥角膜筛查具有良好的准确性。本研究中提到的可视化方法表明,该模型专注于适合诊断的区域,使深度学习的临床可解释性更能被接受。

翻译

许靖楠

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验