Suppr超能文献

基于深度学习的 Zernike 多项式的 KeratoScreen:早期圆锥角膜分类。

KeratoScreen: Early Keratoconus Classification With Zernike Polynomial Using Deep Learning.

机构信息

Division of Health Sciences, Hangzhou Normal University, Hangzhou, China.

Department of Information, Wenzhou Polytechnic, Wenzhou, China.

出版信息

Cornea. 2022 Sep 1;41(9):1158-1165. doi: 10.1097/ICO.0000000000003038. Epub 2022 Apr 20.

Abstract

PURPOSE

We aimed to investigate the usefulness of Zernike coefficients (ZCs) for distinguishing subclinical keratoconus (KC) from normal corneas and to evaluate the goodness of detection of the entire corneal topography and tomography characteristics with ZCs as a screening feature input set of artificial neural networks.

METHODS

This retrospective study was conducted at the Affiliated Eye Hospital of Wenzhou Medical University, China. A total of 208 patients (1040 corneal topography images) were evaluated. Data were collected between 2012 and 2018 using the Pentacam system and analyzed from February 2019 to December 2021. An artificial neural network (KeratoScreen) was trained using a data set of ZCs generated from corneal topography and tomography. Each image was previously assigned to 3 groups: normal (70 eyes; average age, 28.7 ± 2.6 years), subclinical KC (48 eyes; average age, 24.6 ± 5.7 years), and KC (90 eyes; average age, 25.9 ± 5.4 years). The data set was randomly split into 70% for training and 30% for testing. We evaluated the precision of screening symptoms and examined the discriminative capability of several combinations of the input set and nodes.

RESULTS

The best results were achieved using ZCs generated from corneal thickness as an input parameter, determining the 3 categories of clinical classification for each subject. The sensitivity and precision rates were 93.9% and 96.1% in subclinical KC cases and 97.6% and 95.1% in KC cases, respectively.

CONCLUSIONS

Deep learning algorithms based on ZCs could be used to screen for early KC and for other corneal ectasia during preoperative screening for corneal refractive surgery.

摘要

目的

我们旨在研究泽尼克系数(ZCs)在区分亚临床圆锥角膜(KC)与正常角膜中的作用,并评估 ZCs 作为人工神经网络的筛选特征输入集,对整个角膜地形和断层特征的检测效果。

方法

本回顾性研究在中国温州医科大学附属眼视光医院进行。共评估了 208 名患者(1040 个角膜地形图图像)。这些数据是在 2012 年至 2018 年期间使用 Pentacam 系统收集的,并于 2019 年 2 月至 2021 年 12 月进行分析。使用从角膜地形和断层生成的 ZC 数据集训练人工神经网络(KeratoScreen)。每个图像都预先分配到 3 个组中:正常(70 只眼;平均年龄 28.7±2.6 岁)、亚临床 KC(48 只眼;平均年龄 24.6±5.7 岁)和 KC(90 只眼;平均年龄 25.9±5.4 岁)。数据集随机分为 70%用于训练,30%用于测试。我们评估了筛查症状的准确性,并检查了输入集和节点的几种组合的区分能力。

结果

使用角膜厚度生成的 ZCs 作为输入参数,获得了最佳结果,可确定每个受试者的 3 种临床分类。在亚临床 KC 病例中,灵敏度和准确率分别为 93.9%和 96.1%,在 KC 病例中分别为 97.6%和 95.1%。

结论

基于 ZCs 的深度学习算法可用于筛选早期 KC 和其他角膜膨出,用于角膜屈光手术的术前筛查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验