Suppr超能文献

面对机器学习和生成式人工智能,探索科学出版的光明与阴影。

Navigating the light and shadow of scientific publishing faced with machine learning and generative AI.

作者信息

Palmisani Federico, Segelcke Daniel, Vollert Jan

机构信息

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.

Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital, Muenster, Germany.

出版信息

Eur J Pain. 2025 Mar;29(3):e4736. doi: 10.1002/ejp.4736. Epub 2024 Oct 3.

Abstract

BACKGROUND

The public release of ChatGPT in November 2022 sparked a boom and public interest in generative artificial intelligence (AI) that has led to journals and journal families hastily releasing generative AI policies, ranging from asking authors for acknowledgement or declaration to the outright banning of use.

RESULTS

Here, we briefly discuss the basics of machine learning, generative AI, and how it will affect scientific publishing. We focus especially on potential risks and benefits to the scientific community as a whole and journals specifically.

CONCLUSION

While the concerns of editors, for example about manufactured studies, are valid, some recently implemented or suggested policies will not be sustainable in the long run. The quality of generated text and code is quickly becoming so high that it will not only be impossible to detect the use of generative AI but would also mean taking a powerful tool away from researchers that can make their life easier every day.

SIGNIFICANCE

We discuss the history and current state of AI and highlight its relevance for medical publishing and pain research. We provide guidance on how to act now to increase good scientific practice in the world of ChatGPT and call for a task force focusing on improving publishing pain research with use of generative AI.

摘要

背景

2022年11月ChatGPT的公开发布引发了对生成式人工智能(AI)的热潮和公众兴趣,导致各期刊及期刊系列匆忙发布生成式AI政策,范围从要求作者致谢或声明到直接禁止使用。

结果

在此,我们简要讨论机器学习、生成式AI的基础知识,以及它将如何影响科学出版。我们特别关注对整个科学界尤其是期刊的潜在风险和益处。

结论

虽然编辑们的担忧,例如对虚假研究的担忧是合理的,但一些最近实施或建议的政策从长远来看将不可持续。生成文本和代码的质量正在迅速提高,以至于不仅无法检测到生成式AI的使用,而且还意味着从研究人员手中夺走了一个可以让他们日常工作更轻松的强大工具。

意义

我们讨论了AI的历史和现状,并强调了其与医学出版和疼痛研究的相关性。我们就如何立即采取行动以在ChatGPT时代增加良好科学实践提供了指导,并呼吁成立一个特别工作组,专注于利用生成式AI改进疼痛研究的出版工作。

相似文献

9
Editorial: Generative artificial intelligence as a plagiarism problem.社论:生成式人工智能作为一种剽窃问题。
Biol Psychol. 2023 Jul;181:108621. doi: 10.1016/j.biopsycho.2023.108621. Epub 2023 Jun 24.

本文引用的文献

4
The manifold costs of being a non-native English speaker in science.非英语母语者在科学领域的多重代价。
PLoS Biol. 2023 Jul 18;21(7):e3002184. doi: 10.1371/journal.pbio.3002184. eCollection 2023 Jul.
8
Using AI to write scholarly publications.使用人工智能撰写学术出版物。
Account Res. 2024 Oct;31(7):715-723. doi: 10.1080/08989621.2023.2168535. Epub 2023 Jan 25.
10
Propagation of societal gender inequality by internet search algorithms.互联网搜索算法对社会性别不平等的传播。
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2204529119. doi: 10.1073/pnas.2204529119. Epub 2022 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验