Suppr超能文献

锚定在具有强界面耦合的氧修饰二硫化钼上的钌原子,作为锂氧电池高效且稳定的催化剂。

Ruthenium atoms anchored on oxygen-modified molybdenum disulfide with strong interfacial coupling as efficient and stable catalysts for lithium-oxygen batteries.

作者信息

Cao Xuecheng, Cui Minghui, Fang Kaiqi, Yan Liting, Gong Hongyu, Zhang Yu, Zheng Xiangjun, Yang Ruizhi

机构信息

Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China.

Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.

出版信息

J Colloid Interface Sci. 2025 Feb;679(Pt A):234-242. doi: 10.1016/j.jcis.2024.09.226. Epub 2024 Sep 28.

Abstract

Rechargeable non-aqueous lithium-oxygen batteries (LOBs) have garnered increasing attention owing to their high theoretical energy density. However, their slow cathodic kinetics hinder efficient battery reactions. Nanoscale catalysts can effectively enhance electrocatalytic activity and atomic utilization efficiency. However, the agglomeration of nanoscale catalysts (such as cluster and single atoms) during continuous discharge/charge cycles leads to decreased electrochemical performance and poor cyclic stability. Herein, the ruthenium (Ru) atomic sites anchored on an O-doped molybdenum disulfide (O-MoS) catalyst (designated as Ru/O-MoS) was fabricated using a facile impregnation and calcination method. Strong Ru-O coupling between Ru atoms and the O-MoS substrate optimizes the localized electronic structure, resulting in improved electrochemical performance and enhanced resistance to Ostwald ripening. When employed as a cathode catalyst for LOBs, Ru/O-MoS catalyst exhibits a high reversible specific capacity (18700.5 (±59.8) mAh g), good rate capability, and enhanced long-term stability (115 cycles, 1200 h). This study encourages facile and efficient strategies for the development of effective and stable electrocatalysts for use in LOBs.

摘要

可充电非水锂氧电池(LOBs)因其高理论能量密度而受到越来越多的关注。然而,其缓慢的阴极动力学阻碍了高效的电池反应。纳米级催化剂可以有效地提高电催化活性和原子利用效率。然而,在连续充放电循环过程中,纳米级催化剂(如团簇和单原子)的团聚导致电化学性能下降和循环稳定性差。在此,采用简便的浸渍和煅烧方法制备了锚定在氧掺杂二硫化钼(O-MoS)催化剂上的钌(Ru)原子位点(命名为Ru/O-MoS)。Ru原子与O-MoS基底之间的强Ru-O耦合优化了局部电子结构,从而提高了电化学性能并增强了对奥斯特瓦尔德熟化的抗性。当用作LOBs的阴极催化剂时,Ru/O-MoS催化剂表现出高可逆比容量(18700.5(±59.8)mAh g)、良好的倍率性能和增强的长期稳定性(115次循环,1200小时)。这项研究为开发用于LOBs的有效且稳定的电催化剂提供了简便而有效的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验