Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA.
The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
Neuroimage. 2024 Nov 1;301:120882. doi: 10.1016/j.neuroimage.2024.120882. Epub 2024 Oct 2.
BioLuminescent OptoGenetics ("BL-OG") is a chemogenetic method that can evoke optogenetic reactions in the brain non-invasively. In BL-OG, an enzyme that catalyzes a light producing reaction (i.e., a luciferase) is tethered to an optogenetic element that is activated in response to bioluminescent light. Bioluminescence is generated by injecting a chemical substrate (luciferin, e.g., h-Coelenterazine; h-CTZ) that is catalyzed by the luciferase. By directly injecting the luciferin into the brain, we show that bioluminescent light is proportional to spiking activity, and this relationship scales as a function of luciferin dosage. Here, we build on these previous observations by characterizing the temporal dynamics and dose response curves of bioluminescence generated by luminopsins (LMOs), a proxy of BL-OG effects, to intravenous (IV) injections of the luciferin. We imaged bioluminescence through a thinned skull of mice running on a wheel, while delivering h-CTZ via the tail vein with different dosage concentrations and injection rates. The data reveal a systematic relationship between strength of bioluminescence and h-CTZ dosage, with higher concentration generating stronger bioluminescence. We also found that bioluminescent activity occurs rapidly (< 60 s after IV injection) regardless of concentration dosage. However, as expected, the onset time of bioluminescence is delayed as the injection rate decreases. Notably, the strength and time decay of bioluminescence is invariant to the injection rate of h-CTZ. Taken together, these data show that BL-OG effects are highly consistent across injection parameters of h-CTZ, highlighting the reliability of BL-OG as a minimally invasive neuromodulation method.
生物发光光学遗传学("BL-OG")是一种化学遗传学方法,可以非侵入性地在大脑中引发光遗传学反应。在 BL-OG 中,一种催化发光反应的酶(即荧光素酶)与光遗传学元件连接,该元件在响应生物发光光时被激活。生物发光是通过注射化学底物(荧光素,例如 h-Coelenterazine;h-CTZ)产生的,该底物由荧光素酶催化。通过直接将荧光素注入大脑,我们表明生物发光与尖峰活动成正比,并且这种关系与荧光素剂量成比例。在这里,我们通过对发光蛋白(LMOs)产生的生物发光的时间动态和剂量反应曲线进行特征描述,建立在这些先前的观察结果之上,发光蛋白是 BL-OG 效应的替代物,通过尾静脉注射不同剂量浓度和注射速率的荧光素。我们通过在轮上奔跑的小鼠的变薄颅骨成像生物发光,同时通过尾静脉以不同的剂量浓度和注射速率输送 h-CTZ。数据揭示了生物发光强度与 h-CTZ 剂量之间的系统关系,高浓度产生更强的生物发光。我们还发现,生物发光活性发生得很快(IV 注射后<60 秒),与浓度剂量无关。然而,正如预期的那样,生物发光的起始时间随着注射速率的降低而延迟。值得注意的是,h-CTZ 注射速率的变化不会影响生物发光的强度和时间衰减。总之,这些数据表明 BL-OG 效应在 h-CTZ 的注射参数中高度一致,突出了 BL-OG 作为一种微创神经调节方法的可靠性。